Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 470
Filter
1.
Eur J Neurol ; : e16388, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946703

ABSTRACT

BACKGROUND AND PURPOSE: Parkinson's disease (PD) is an age-related condition characterized by substantial phenotypic variability. Consequently, pathways and proteins involved in biological aging, such as the central aging pathway comprising insulin-like growth factor 1-α-Klotho-sirtuin 1-forkhead box O3-peroxisome proliferator-activated receptor γ, may potentially influence disease progression. METHODS: Cerebrospinal fluid (CSF) levels of α-Klotho in 471 PD patients were examined. Of the 471 patients, 96 carried a GBA1 variant (PD GBA1), whilst the 375 non-carriers were classified as PD wild-type (PD WT). Each patient was stratified into a CSF α-Klotho tertile group based on the individual level. Kaplan-Meier survival curves and Cox regression analysis stratified by tertile groups were conducted. These longitudinal data were available for 255 patients. Follow-up times reached from 8.4 to 12.4 years. The stratification into PD WT and PD GBA1 was undertaken to evaluate potential continuum patterns, particularly in relation to CSF levels. RESULTS: Higher CSF levels of α-Klotho were associated with a significant later onset of cognitive impairment. Elevated levels of α-Klotho in CSF were linked to higher Montreal Cognitive Assessment scores in male PD patients with GBA1 mutations. CONCLUSIONS: Our results indicate that higher CSF levels of α-Klotho are associated with a delayed cognitive decline in PD. Notably, this correlation is more prominently observed in PD patients with GBA1 mutations, potentially reflecting the accelerated biological aging profile characteristic of individuals harboring GBA1 variants.

2.
J Parkinsons Dis ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38848197

ABSTRACT

Background: Mutations in the Leucine Rich Repeat Kinase 2 gene are highly relevant in both sporadic and familial cases of Parkinson's disease. Specific therapies are entering clinical trials but patient stratification remains challenging. Dysregulated microRNA expression levels have been proposed as biomarker candidates in sporadic Parkinson's disease. Objective: In this proof-of concept study we evaluate the potential of extracellular miRNA signatures to identify LRRK2-driven molecular patterns in Parkinson's disease. Methods: We measured expression levels of 91 miRNAs via RT-qPCR in ten individuals with sporadic Parkinson's disease, ten LRRK2 mutation carriers and eleven healthy controls using both plasma and cerebrospinal fluid. We compared miRNA signatures using heatmaps and t-tests. Next, we applied group sorting algorithms and tested sensitivity and specificity of their group predictions. Results: miR-29c-3p was differentially expressed between LRRK2 mutation carriers and sporadic cases, with miR-425-5p trending towards significance. Individuals clustered in principal component analysis along mutation status. Group affiliation was predicted with high accuracy in the prediction models (sensitivity up to 89%, specificity up to 70%). miRs-128-3p, 29c-3p, 223-3p, and 424-5p were identified as promising discriminators among all analyses. Conclusions: LRRK2 mutation status impacts the extracellular miRNA signature measured in plasma and separates mutation carriers from sporadic Parkinson's disease patients. Monitoring LRRK2 miRNA signatures could be an interesting approach to test drug efficacy of LRRK2-targeting therapies. In light of small sample size, the suggested approach needs to be validated in larger cohorts.


We know that alterations in a gene called Leucine Rich Repeat Kinase 2 are important in both inherited and non-inherited cases of Parkinson's disease. We also know that treatments for Parkinson's disease specifically targeting LRRK2 are currently being developed. Challenges for developing such a treatment, however, are how to accurately identify patients who could benefit from these therapies and to observe whether the treatment interacts with its target on a molecular level. In this study, we tested whether individuals with an alteration in the LRRK2 gene display a distinct pattern of small RNA molecules, called microRNAs. We measured the amount of 91 microRNAs present in blood of individuals with an alteration in the LRRK2 gene and compared their pattern to patients with a non-inherited form of Parkinson's disease and healthy controls.We found that the amount of a specific microRNA called miR-29c-3p was different between individuals with or without an alteration of the LRRK2 gene. Additionally, we developed models that could predict whether someone had a LRRK2 mutation based on the microRNA pattern in the plasma. Of course, we have easier methods to find these gene alterations, but our findings suggest that changes of LRRK2 result in a shift of microRNA patterns in the blood. This could help us to observe the effects of a LRRK2 specific treatment which tries to revert these changes. As we know that LRRK2 also plays a role in some patients with a non-inherited form of Parkinson's disease, this microRNA pattern could maybe even help us to identify these individuals. It is important to note that our study involved a small number of individuals, so that further research with larger groups is needed to confirm our findings.

3.
Nat Med ; 30(6): 1771-1783, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38890531

ABSTRACT

Minimally invasive biomarkers are urgently needed to detect molecular pathology in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Here, we show that plasma extracellular vesicles (EVs) contain quantifiable amounts of TDP-43 and full-length tau, which allow the quantification of 3-repeat (3R) and 4-repeat (4R) tau isoforms. Plasma EV TDP-43 levels and EV 3R/4R tau ratios were determined in a cohort of 704 patients, including 37 genetically and 31 neuropathologically proven cases. Diagnostic groups comprised patients with TDP-43 proteinopathy ALS, 4R tauopathy progressive supranuclear palsy, behavior variant FTD (bvFTD) as a group with either tau or TDP-43 pathology, and healthy controls. EV tau ratios were low in progressive supranuclear palsy and high in bvFTD with tau pathology. EV TDP-43 levels were high in ALS and in bvFTD with TDP-43 pathology. Both markers discriminated between the diagnostic groups with area under the curve values >0.9, and between TDP-43 and tau pathology in bvFTD. Both markers strongly correlated with neurodegeneration, and clinical and neuropsychological markers of disease severity. Findings were replicated in an independent validation cohort of 292 patients including 34 genetically confirmed cases. Taken together, the combination of EV TDP-43 levels and EV 3R/4R tau ratios may aid the molecular diagnosis of FTD, FTD spectrum disorders and ALS, providing a potential biomarker to monitor disease progression and target engagement in clinical trials.


Subject(s)
Amyotrophic Lateral Sclerosis , Biomarkers , DNA-Binding Proteins , Extracellular Vesicles , Frontotemporal Dementia , tau Proteins , Humans , Amyotrophic Lateral Sclerosis/blood , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , tau Proteins/blood , tau Proteins/metabolism , Extracellular Vesicles/metabolism , Frontotemporal Dementia/blood , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Biomarkers/blood , DNA-Binding Proteins/blood , DNA-Binding Proteins/genetics , Female , Male , Aged , Middle Aged , Supranuclear Palsy, Progressive/blood , Supranuclear Palsy, Progressive/diagnosis , Protein Isoforms/blood
4.
NPJ Parkinsons Dis ; 10(1): 85, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622158

ABSTRACT

The genetic loci implicated in familial Parkinson's disease (PD) have limited generalizability to the Indian PD population. We tested mutations and the frequency of known mutations in the SNCA gene in a PD cohort from India. We selected 298 PD cases and 301 age-matched controls for targeted resequencing (before QC), along with 363 PD genomes of Indian ancestry and 1029 publicly available whole genomes from India as healthy controls (IndiGenomes), to determine the frequency of monogenic SNCA mutations. The raw sequence reads were analyzed using an in-house analysis pipeline, allowing the detection of small variants and structural variants using Manta. The in-depth analysis of the SNCA locus did not identify missense or structural variants, including previously identified SNCA mutations, in the Indian population. The familial forms of SNCA gene variants do not play a major role in the Indian PD population and this warrants further research in the under-represented population.

5.
Mov Disord ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38586902

ABSTRACT

BACKGROUND: Most Parkinson's disease (PD) loci have shown low prevalence in the Indian population, highlighting the need for further research. OBJECTIVE: The aim of this study was to characterize a novel phosphatase tensin homolog-induced serine/threonine kinase 1 (PINK1) mutation causing PD in an Indian family. METHODS: Exome sequencing of a well-characterized Indian family with PD. A novel PINK1 mutation was studied by in silico modeling using AlphaFold2, expression of mutant PINK1 in human cells depleted of functional endogenous PINK1, followed by quantitative image analysis and biochemical assessment. RESULTS: We identified a homozygous chr1:20648535-20648535 T>C on GRCh38 (p.F385S) mutation in exon 6 of PINK1, which was absent in 1029 genomes from India and in other known databases. PINK1 F385S lies within the highly conserved Deutsche Forschungsgemeinschaft (DFG) motif, destabilizes its active state, and impairs phosphorylation of ubiquitin at serine 65 and proper engagement of parkin upon mitochondrial depolarization. CONCLUSIONS: We characterized a novel nonconservative mutation in the DFG motif of PINK1, which causes loss of its ubiquitin kinase activity and inhibition of mitophagy. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

6.
NPJ Parkinsons Dis ; 10(1): 88, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649346

ABSTRACT

With disease-modifying treatment for Parkinson's disease (PD) associated with variants in the glucocerebrosidase gene (GBA1) under way, the challenge to design clinical trials with non-PD-manifest GBA mutation carriers (GBA1NMC) comes within close reach. To delineate trajectories of motor and non-motor markers as well as serum neurofilament light (sNfL) levels and to evaluate clinical endpoints as outcomes for clinical trials in GBA1NMC, longitudinal data of 56 GBA1NMC carriers and 112 age- and sex-matched GBA1 wildtype participants (GBA1wildtype) with up to 9 years of follow-up was analyzed using linear mixed-effects models (LMEM) and Kaplan-Meier survival analysis of clinical endpoints for motor and cognitive function. GBA1NMC showed worse performance in Pegboard, 20 m fast walking, global cognition as well as in executive and memory function at baseline. Longitudinally, LMEM revealed a higher annual increase of the MDS-UPDRS III bradykinesia subscore in GBA1NMC compared to GBA1wildtype, but comparable trajectories of all other motor and non-motor markers as well as sNfL. Kaplan-Meier survival analysis showed a significantly earlier progression to clinical endpoints of cognitive decline in GBA1NMC. Incidence of PD was significantly higher in GBA1NMC. In conclusion, our study extends data on GBA1NMC indicating early cognitive decline as a potentially characteristic feature. Comprehensive longitudinal assessments of cognitive function are crucial to delineate the evolution of early changes in GBA1NMC enabling a more accurate stratification and allow for a more precise definition of trial design and sample size.

7.
medRxiv ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38529492

ABSTRACT

Until recently, about three-quarters of all monogenic Parkinson's disease (PD) studies were performed in European/White ancestry, thereby severely limiting our insights into genotype-phenotype relationships at global scale. The first systematic approach to embrace monogenic PD worldwide, The Michael J. Fox Foundation Global Monogenic PD (MJFF GMPD) Project, contacted authors of publications reporting individuals carrying pathogenic variants in known PD-causing genes. In contrast, the Global Parkinson's Genetics Program's (GP2) Monogenic Network took a different approach by targeting PD centers not yet represented in the medical literature. Here, we describe combining both efforts in a "merger project" resulting in a global monogenic PD cohort with build-up of a sustainable infrastructure to identify the multi-ancestry spectrum of monogenic PD and enable studies of factors modifying penetrance and expression of monogenic PD. This effort demonstrates the value of future research based on team science approaches to generate comprehensive and globally relevant results.

8.
NPJ Parkinsons Dis ; 10(1): 72, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553467

ABSTRACT

Bi-allelic pathogenic variants in PRKN are the most common cause of autosomal recessive Parkinson's disease (PD). 647 patients with PRKN-PD were included in this international study. The pathogenic variants present were characterised and investigated for their effect on phenotype. Clinical features and progression of PRKN-PD was also assessed. Among 133 variants in index cases (n = 582), there were 58 (43.6%) structural variants, 34 (25.6%) missense, 20 (15%) frameshift, 10 splice site (7.5%%), 9 (6.8%) nonsense and 2 (1.5%) indels. The most frequent variant overall was an exon 3 deletion (n = 145, 12.3%), followed by the p.R275W substitution (n = 117, 10%). Exon3, RING0 protein domain and the ubiquitin-like protein domain were mutational hotspots with 31%, 35.4% and 31.7% of index cases presenting mutations in these regions respectively. The presence of a frameshift or structural variant was associated with a 3.4 ± 1.6 years or a 4.7 ± 1.6 years earlier age at onset of PRKN-PD respectively (p < 0.05). Furthermore, variants located in the N-terminus of the protein, a region enriched with frameshift variants, were associated with an earlier age at onset. The phenotype of PRKN-PD was characterised by slow motor progression, preserved cognition, an excellent motor response to levodopa therapy and later development of motor complications compared to early-onset PD. Non-motor symptoms were however common in PRKN-PD. Our findings on the relationship between the type of variant in PRKN and the phenotype of the disease may have implications for both genetic counselling and the design of precision clinical trials.

9.
J Med Genet ; 61(5): 443-451, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38458754

ABSTRACT

BACKGROUND: Dystonia is one of the most common movement disorders. To date, the genetic causes of dystonia in populations of European descent have been extensively studied. However, other populations, particularly those from the Middle East, have not been adequately studied. The purpose of this study is to discover the genetic basis of dystonia in a clinically and genetically well-characterised dystonia cohort from Turkey, which harbours poorly studied populations. METHODS: Exome sequencing analysis was performed in 42 Turkish dystonia families. Using co-expression network (CEN) analysis, identified candidate genes were interrogated for the networks including known dystonia-associated genes and genes further associated with the protein-protein interaction, animal model-based characteristics and clinical findings. RESULTS: We identified potentially disease-causing variants in the established dystonia genes (PRKRA, SGCE, KMT2B, SLC2A1, GCH1, THAP1, HPCA, TSPOAP1, AOPEP; n=11 families (26%)), in the uncommon forms of dystonia-associated genes (PCCB, CACNA1A, ALDH5A1, PRKN; n=4 families (10%)) and in the candidate genes prioritised based on the pathogenicity of the variants and CEN-based analyses (n=11 families (21%)). The diagnostic yield was found to be 36%. Several pathways and gene ontologies implicated in immune system, transcription, metabolic pathways, endosomal-lysosomal and neurodevelopmental mechanisms were over-represented in our CEN analysis. CONCLUSIONS: Here, using a structured approach, we have characterised a clinically and genetically well-defined dystonia cohort from Turkey, where dystonia has not been widely studied, and provided an uncovered genetic basis, which will facilitate diagnostic dystonia research.


Subject(s)
Dystonia , Dystonic Disorders , Animals , Humans , Dystonia/genetics , Dystonia/diagnosis , Dystonic Disorders/genetics , Dystonic Disorders/diagnosis , Genetic Testing , Turkey , Molecular Biology , Mutation , DNA-Binding Proteins/genetics , Apoptosis Regulatory Proteins/genetics
10.
Mov Disord ; 39(4): 715-722, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38357851

ABSTRACT

INTRODUCTION: Pathogenic variants in parkin (PRKN gene) are the second most prevalent known monogenic cause of Parkinson's disease (PD). How monoallelic or biallelic pathogenic variants in the PRKN gene may affect its transcription in patient-derived biological material has not been systematically studied. METHODS: PRKN mRNA expression levels were measured with real-time polymerase chain reaction (RT-PCR) in peripheral blood mononuclear cells (PBMCs). PBMCs were derived from PRKN-mutated PD patients (PRKN-PD) (n = 12), sporadic PD (sPD) (n = 21) and healthy controls (n = 21). Six of the PRKN-PD patients were heterozygous, four were compound heterozygous, and two were homozygous for PRKN variants. RESULTS: A statistically significant decrease in PRKN expression levels was present, compared to healthy controls and sPD, in heterozygous (P = 0.019 and 0.031 respectively) and biallelic (P < 0.001 for both) PRKN-PD. PRKN expression levels in biallelic PD patients were uniformly very low and were reduced, albeit not significantly, compared to heterozygotes. Based on receiver operating characteristic analysis, low PRKN expression levels were a sensitive and extremely specific indicator for the presence of PRKN pathogenic variants. CONCLUSIONS: Assessment of PRKN mRNA levels in PBMCs may be a useful way to screen for biallelic pathogenic variants in the PRKN gene. Suspicion for certain variants in a heterozygous state may also be raised based on low PRKN mRNA levels. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Leukocytes, Mononuclear , Parkinson Disease , RNA, Messenger , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/genetics , Parkinson Disease/genetics , Parkinson Disease/blood , Leukocytes, Mononuclear/metabolism , Male , Female , RNA, Messenger/metabolism , Middle Aged , Aged , Adult , Mutation
11.
NPJ Parkinsons Dis ; 10(1): 24, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38242875

ABSTRACT

Seed amplification assays have been implemented in Parkinson's disease to reveal disease-specific misfolded alpha-synuclein aggregates in biospecimens. While the assays' qualitative dichotomous seeding response is valuable to stratify and enrich cohorts for alpha-synuclein pathology in general, more quantitative parameters that are associated with clinical dynamics of disease progression and that might potentially serve as exploratory outcome measures in clinical trials targeting alpha-synuclein would add important information. To evaluate whether the seeding kinetic parameters time required to reach the seeding threshold (LAG phase), the peak of fluorescence response (Imax), and the area under the curve (AUC) are associated with clinical trajectories, we analyzed LAG, Imax, and AUC in relation to the development of cognitive decline in a longitudinal cohort of 199 people with Parkinson's disease with positive CSF alpha-synuclein seeding status. Patients were stratified into tertiles based on their individual CSF alpha-synuclein seeding kinetic properties. The effect of the kinetic parameters on longitudinal development of cognitive impairment defined by MoCA ≤25 was analyzed by Cox-Regression. Patients with a higher number of positive seeding replicates and tertile groups of shorter LAG, higher Imax, and higher AUC showed a higher prevalence of and a shorter duration until cognitive impairment longitudinally (3, 6, and 3 years earlier with p ≤ 0.001, respectively). Results remained similar in separate subgroup analyses of patients with and without GBA mutation. We conclude that a more prominent alpha-synuclein seeding kinetic profile translates into a more rapid development of cognitive decline.

13.
Nature ; 624(7990): 102-108, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37993713

ABSTRACT

Taking stock of global progress towards achieving the Paris Agreement requires consistently measuring aggregate national actions and pledges against modelled mitigation pathways1. However, national greenhouse gas inventories (NGHGIs) and scientific assessments of anthropogenic emissions follow different accounting conventions for land-based carbon fluxes resulting in a large difference in the present emission estimates2,3, a gap that will evolve over time. Using state-of-the-art methodologies4 and a land carbon-cycle emulator5, we align the Intergovernmental Panel on Climate Change (IPCC)-assessed mitigation pathways with the NGHGIs to make a comparison. We find that the key global mitigation benchmarks become harder to achieve when calculated using the NGHGI conventions, requiring both earlier net-zero CO2 timing and lower cumulative emissions. Furthermore, weakening natural carbon removal processes such as carbon fertilization can mask anthropogenic land-based removal efforts, with the result that land-based carbon fluxes in NGHGIs may ultimately become sources of emissions by 2100. Our results are important for the Global Stocktake6, suggesting that nations will need to increase the collective ambition of their climate targets to remain consistent with the global temperature goals.


Subject(s)
Carbon Dioxide , Congresses as Topic , Goals , Greenhouse Gases , International Cooperation , Temperature , Benchmarking , Carbon Cycle , Carbon Dioxide/analysis , Congresses as Topic/legislation & jurisprudence , Greenhouse Gases/analysis , Human Activities , International Cooperation/legislation & jurisprudence , Paris , Environmental Policy/legislation & jurisprudence
14.
Acta Neuropathol Commun ; 11(1): 162, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37814347

ABSTRACT

The alpha-synuclein (aSyn) seed amplification assay (SAA) can identify aSyn aggregates as indicator for Lewy body pathology in biomaterials of living patients and help in diagnosing Parkinson´s disease and dementia syndromes. Our objective was to confirm that qualitative results of aSyn SAA are reproducible across laboratories and to determine whether quantitative findings correlate with patient clinical characteristics. Therefore cerebrospinal fluid samples were re-analysed by aSyn SAA in a second laboratory with four technical replicates for each sample. Kinetic parameters derived from each aggregation curve were summarized and correlated with patient characteristics. We found that qualitative findings were identical between the two laboratories for 54 of 55 patient samples. The number of positive replicates for each sample also showed good agreement between laboratories. Moreover, specific kinetic parameters of the SAA showed a strong correlation with clinical parameters, notably with cognitive performance evaluated by the Montreal Cognitive Assessment. We concluded that SAA findings are highly reproducible across laboratories following the same protocol. SAA reports not only the presence of Lewy pathology but is also associated with clinical characteristics. Thus, aSyn SAA can potentially be used for patient stratification and determining the target engagement of aSyn targeting treatments.


Subject(s)
Cognitive Dysfunction , Lewy Body Disease , Parkinson Disease , Humans , alpha-Synuclein/analysis , Lewy Bodies/pathology , Lewy Body Disease/pathology , Parkinson Disease/complications , Parkinson Disease/diagnosis , Parkinson Disease/cerebrospinal fluid , Cognitive Dysfunction/diagnosis
15.
Mov Disord Clin Pract ; 10(9): 1368-1376, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37772304

ABSTRACT

Background: Multiple system atrophy (MSA) is a devastating disease characterized by a variable combination of motor and autonomic symptoms. Previous studies identified numerous clinical factors to be associated with shorter survival. Objective: To enable personalized patient counseling, we aimed at developing a risk model of survival based on baseline clinical symptoms. Methods: MSA patients referred to the Movement Disorders Unit in Innsbruck, Austria, between 1999 and 2016 were retrospectively analyzed. Kaplan-Meier curves and multivariate Cox regression analysis with least absolute shrinkage and selection operator penalty for variable selection were performed to identify prognostic factors. A nomogram was developed to estimate the 7 years overall survival probability. The performance of the predictive model was validated and calibrated internally using bootstrap resampling and externally using data from the prospective European MSA Study Group Natural History Study. Results: A total of 210 MSA patients were included in this analysis, of which 124 patients died. The median survival was 7 years. The following clinical variables were found to significantly affect overall survival and were included in the nomogram: age at symptom onset, falls within 3 years of onset, early autonomic failure including orthostatic hypotension and urogenital failure, and lacking levodopa response. The time-dependent area under curve for internal and external validation was >0.7 within the first 7 years of the disease course. The model was well calibrated showing good overlap between predicted and actual survival probability at 7 years. Conclusion: The nomogram is a simple tool to predict survival on an individual basis and may help to improve counseling and treatment of MSA patients.

16.
Lancet Neurol ; 22(8): 661-671, 2023 08.
Article in English | MEDLINE | ID: mdl-37479372

ABSTRACT

BACKGROUND: Variants in the GBA1 gene, which encodes lysosomal acid glucocerebrosidase, are among the most common genetic risk factors for Parkinson's disease and are associated with faster disease progression. The mechanisms involved are unresolved but might include accumulation of glucosylceramide. Venglustat is a brain-penetrant glucosylceramide synthase inhibitor that, in previous studies, reduced amounts of the glycosphingolipid. We aimed to assess the safety, efficacy, and target engagement of venglustat in people with early-stage Parkinson's disease carrying pathogenic GBA1 variants. METHODS: MOVES-PD part 2 was a randomised, double-blinded, placebo-controlled phase 2 study done at 52 centres (academic sites, specialty clinics, and general neurology centres) in 16 countries. Eligible adults aged 18-80 years with Parkinson's disease (Hoehn and Yahr stage ≤2) and one or more GBA1 variants were randomly assigned using an interactive voice-response system (1:1) to 52 weeks of treatment with oral venglustat (15 mg/day) or matching placebo. Investigators, site personnel, participants, and their caregivers were masked to treatment allocation. The primary outcome measure was the change from baseline to 52 weeks in the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) parts II and III combined score (a higher score indicates greater impairment), and it was analysed in a modified intention-to-treat population (ie, all randomly assigned participants with a baseline and at least one post-baseline measurement during the treatment period). This study was registered with ClinicalTrials.gov (NCT02906020) and is closed to recruitment. FINDINGS: Between Dec 15, 2016, and May 27, 2021, 221 participants were randomly assigned to venglustat (n=110) or placebo (n=111). The least squares mean change in MDS-UPDRS parts II and III combined score was 7·29 (SE 1·36) for venglustat (n=96) and 4·71 (SE 1·27) for placebo (n=105); the absolute difference between groups was 2·58 (95% CI -1·10 to 6·27; p=0·17). The most common treatment-emergent adverse events (TEAEs) were constipation and nausea (both were reported by 23 [21%] of 110 participants in the venglustat group and eight [7%] of 111 participants in the placebo group). Serious TEAEs were reported for 12 (11%) participants in each group. There was one death in the venglustat group owing to an unrelated cardiopulmonary arrest and there were no deaths in the placebo group. INTERPRETATION: In people with GBA1-associated Parkinson's disease in our study, venglustat had a satisfactory safety profile but showed no beneficial treatment effect compared with placebo. These findings indicate that glucosylceramide synthase inhibition with venglustat might not be a viable therapeutic approach for GBA1-associated Parkinson's disease. FUNDING: Sanofi.


Subject(s)
Parkinson Disease , Adult , Humans , Parkinson Disease/drug therapy , Treatment Outcome , Double-Blind Method
17.
bioRxiv ; 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37502982

ABSTRACT

Several prior studies have proposed the involvement of various brain regions and cell types in Parkinson's disease (PD) pathology. Here, we performed snRNA-seq on the prefrontal cortex and anterior cingulate regions from post-mortem control and PD brain tissue. We found a significant association of oligodendrocytes (ODCs) and oligodendrocyte precursor cells (OPCs) with PD-linked risk loci and report several dysregulated genes and pathways, including regulation of tau-protein kinase activity, regulation of inclusion body assembly and protein processing involved in protein targeting to mitochondria. In an independent PD cohort with clinical measures (681 cases and 549 controls), polygenic risk scores derived from the dysregulated genes significantly predicted Montreal Cognitive Assessment (MoCA)-, and Beck Depression Inventory-II (BDI-II)-scores but not motor impairment (UPDRS-III). We extended our analysis of clinical outcome prediction by incorporating three separate datasets that were previously published by different laboratories. In the first dataset from the anterior cingulate cortex, we identified a correlation between ODCs and BDI-II. In the second dataset obtained from the substantia nigra (SN), OPCs displayed notable predictive ability for UPDRS-III. In the third dataset from the SN region, a distinct subtype of OPCs, labeled OPC_ADM, exhibited predictive ability for UPDRS-III. Intriguingly, the OPC_ADM cluster also demonstrated a significant increase in PD samples. These results suggest that by expanding our focus to glial cells, we can uncover region-specific molecular pathways associated with PD symptoms.

18.
J Neural Transm (Vienna) ; 130(6): 827-838, 2023 06.
Article in English | MEDLINE | ID: mdl-37169935

ABSTRACT

The heterogeneity of Parkinson's disease (PD), i.e. the various clinical phenotypes, pathological findings, genetic predispositions and probably also the various implicated pathophysiological pathways pose a major challenge for future research projects and therapeutic trail design. We outline several pathophysiological concepts, pathways and mechanisms, including the presumed roles of α-synuclein misfolding and aggregation, Lewy bodies, oxidative stress, iron and melanin, deficient autophagy processes, insulin and incretin signaling, T-cell autoimmunity, the gut-brain axis and the evidence that microbial (viral) agents may induce molecular hallmarks of neurodegeneration. The hypothesis is discussed, whether PD might indeed be triggered by exogenous (infectious) agents in susceptible individuals upon entry via the olfactory bulb (brain first) or the gut (body-first), which would support the idea that disease mechanisms may change over time. The unresolved heterogeneity of PD may have contributed to the failure of past clinical trials, which attempted to slow the course of PD. We thus conclude that PD patients need personalized therapeutic approaches tailored to specific phenomenological and etiologic subtypes of disease.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/drug therapy , alpha-Synuclein/metabolism , Lewy Bodies/metabolism , Brain/metabolism , T-Lymphocytes/metabolism
20.
Nat Commun ; 14(1): 1930, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37024507

ABSTRACT

Mutations in GBA1, the gene encoding the lysosomal enzyme ß-glucocerebrosidase (GCase), which cause Gaucher's disease, are the most frequent genetic risk factor for Parkinson's disease (PD). Here, we employ global proteomic and single-cell genomic approaches in stable cell lines as well as induced pluripotent stem cell (iPSC)-derived neurons and midbrain organoids to dissect the mechanisms underlying GCase-related neurodegeneration. We demonstrate that GCase can be imported from the cytosol into the mitochondria via recognition of internal mitochondrial targeting sequence-like signals. In mitochondria, GCase promotes the maintenance of mitochondrial complex I (CI) integrity and function. Furthermore, GCase interacts with the mitochondrial quality control proteins HSP60 and LONP1. Disease-associated mutations impair CI stability and function and enhance the interaction with the mitochondrial quality control machinery. These findings reveal a mitochondrial role of GCase and suggest that defective CI activity and energy metabolism may drive the pathogenesis of GCase-linked neurodegeneration.


Subject(s)
Glucosylceramidase , Parkinson Disease , Humans , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Proteomics , Parkinson Disease/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Energy Metabolism/genetics , Mutation , Lysosomes/metabolism , alpha-Synuclein/metabolism , Mitochondrial Proteins/metabolism , ATP-Dependent Proteases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...