Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 191: 196-203, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29035791

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are a global problem, and in urban soils they can be found at potentially hazard levels. Nevertheless, the real risks that these contaminants pose to the environment are not well known, since the bioavailability of PAHs in urban soils has been poorly studied. Therefore, the bioavailability of PAHs in some selected urban soils from Lisbon (Portugal) was evaluated. Moreover, the applicability of a first screening phase based on total contents of PAHs was assessed. Results show that bioavailability of PAHs is reduced (low levels in earthworms, low accumulation percentages, and low biota-to-soil accumulation factors values), especially in more contaminated soils. The aging of these compounds explains this low availability, and confirms the generally accepted assumption that accumulation of PAHs in urban areas is mostly related with a long-term deposition of contaminated particles. The comparison of measured PAHs concentrations in earthworm tissues with the ones predicted based on theoretical models, reinforce that risks based on total levels are overestimated, but it can be a good initial approach for urban soils. This study also highlights the need of more reliable ecotoxicological data.


Subject(s)
Environmental Pollution/analysis , Oligochaeta/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Soil/chemistry , Animals , Biological Availability , Oligochaeta/chemistry , Polycyclic Aromatic Hydrocarbons/pharmacokinetics , Portugal , Risk Assessment
2.
Sci Total Environ ; 575: 367-377, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27744202

ABSTRACT

Soil pollution at firing ranges is an issue of growing importance, due to the accumulation in soils of contaminants derived from ammunition and clay targets. The concentration of Pb and PAHs was determined in five soils of an abandoned shooting range in Galicia (northwest Spain), and an ecotoxicological characterization was performed in order to obtain an assessment of risks. Therefore, the retention capacity of soils was assessed using test organisms of different trophic levels, and the role of soils as habitat for soil invertebrates was assessed by reproduction tests and bioaccumulation assays with earthworms. The sum of 15 PAHs ranged between 38 and 360mgkg-1, which exceed, together with Pb (160-720mgkg-1), the Galician generic reference value for urban and sporting field soils. Bioaccumulation in E. andrei showed contents up to 104,000µgPbkg-1dw, and up to 645µgPAHskg-1fw. High contents of Pb and PAHs in soil samples and in Eisenia andrei whole body, caused a reduction in the number of juveniles produced, whereas, Vibrio fischeri, Raphidocelis subcapitata and Daphnia magna displayed a slight toxic response to the soil elutriates tested. Therefore, the function of these soils to retain contaminants seemed not compromised, probably due to the high organic matter content and pH values, which are weakly acidic. The habitat function was affected, indicating that soil solution is not the only route of exposure to contaminants to E. andrei. The integration of chemical and ecotoxicological lines of evidence give rise to high risks values, restricting the use of these areas, and pointing for risks to surrounding ecosystems due to possible trophic transferences. The calculation of risks using the chemical and ecotoxicological data, required by Spanish legislation, could be a good approach to communicate with those responsible and/or involved in the management of contaminated sites.

3.
Aquat Toxicol ; 176: 197-207, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27162069

ABSTRACT

Cadmium-based quantum dots (QDs) are increasingly applied in existent and emerging technologies, especially in biological applications due to their exceptional photophysical and functionalization properties. However, they are very toxic compounds due to the high reactive and toxic cadmium core. The present study aimed to determine the toxicity of three different QDs (CdS 380, CdS 480 and CdSeS/ZnS) before and after the exposure of suspensions to sunlight, in order to assess the effect of environmentally relevant irradiation levels in their toxicity, which will act after their release to the environment. Therefore, a battery of ecotoxicological tests was performed with organisms that cover different functional and trophic levels, such as Vibrio fischeri, Raphidocelis subcapitata, Chlorella vulgaris and Daphnia magna. The results showed that core-shell type QDs showed lower toxic effects to V. fischeri in comparison to core type QDs before sunlight exposure. However, after sunlight exposure, there was a decrease of CdS 380 and CdS 480 QD toxicity to bacterium. Also, after sunlight exposure, an effective decrease of CdSeS/ZnS and CdS 480 toxicity for D. magna and R. subcapitata, and an evident increase in CdS 380 QD toxicity, at least for D. magna, were observed. The results of this study suggest that sunlight exposure has an effect in the aggregation and precipitation reactions of larger QDs, causing the degradation of functional groups and formation of larger bulks which may be less prone to photo-oxidation due to their diminished surface area. The same aggregation behaviour after sunlight exposure was observed for bare QDs. These results further emphasize that the shell of QDs seems to make them less harmful to aquatic biota, both under standard environmental conditions and after the exposure to a relevant abiotic factor like sunlight.


Subject(s)
Cadmium Compounds/toxicity , Quantum Dots/toxicity , Sulfides/toxicity , Sunlight , Water Pollutants, Chemical/toxicity , Aliivibrio fischeri/drug effects , Animals , Cadmium Compounds/radiation effects , Chlorophyta/drug effects , Daphnia/drug effects , Quantum Dots/radiation effects , Sulfides/radiation effects , Zinc Compounds/toxicity
4.
Sci Total Environ ; 547: 413-421, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26795542

ABSTRACT

Aiming at contributing new insights into the effects of nanomaterials (NMs) in the terrestrial ecosystem, this study evaluated the impacts of organic nano-vesicles of sodium dodecyl sulphate/didodecyl dimethylammonium bromide (SDS/DDAB) on the emergence and growth of plant seeds, and on the avoidance and reproduction of soil invertebrates. For this purpose several ecotoxicological assays were performed with different test species (terrestrial plants: Zea mays, Avena sativa, Brassica oleracea and Lycopersicon esculentum; soil invertebrates: Eisenia andrei and Folsomia candida). A wide range of SDS/DDAB concentrations were tested, following standard protocols, and using the standard OECD soil as a test substrate (5% of organic matter). The aqueous suspensions of SDS/DDAB, used to spike the soils, were characterised by light scattering techniques for hydrodynamic size of the vesicles, aggregation index, polydispersity index, zeta potential and surface charge. The SDS/DDAB concentrations in the test soil were analysed by HPLC-UV at the end of the assays. Invertebrate species were revealed to be sensitive to nano-SDS/DDAB upon immediate exposure to freshly spiked soils. However, the degradation of SDS/DDAB nano-vesicles in the soil with time prevented the occurrence of significant reproduction effects on soil invertebrates. Plants were not particularly sensitive to SDS/DDAB, except B. oleracea (at concentrations above 375 mg kg(-1)dw). The results gathered in this study allowed a preliminary determination of a risk limit to nano-SDS/DDAB. The low toxicity of SDS/DDAB nano-vesicles could be explained by its high and fast degradation in the soil. The soil microbial community could have an important role in the fate of this NM, thus it is of remarkable importance to improve this risk limit by taking into account specific data addressing this community.


Subject(s)
Nanostructures/toxicity , Quaternary Ammonium Compounds/toxicity , Sodium Dodecyl Sulfate/toxicity , Soil Pollutants/toxicity , Animals , Biological Assay , Ecotoxicology , Oligochaeta , Plants , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...