Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3741, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702301

ABSTRACT

Targeted therapy is effective in many tumor types including lung cancer, the leading cause of cancer mortality. Paradigm defining examples are targeted therapies directed against non-small cell lung cancer (NSCLC) subtypes with oncogenic alterations in EGFR, ALK and KRAS. The success of targeted therapy is limited by drug-tolerant persister cells (DTPs) which withstand and adapt to treatment and comprise the residual disease state that is typical during treatment with clinical targeted therapies. Here, we integrate studies in patient-derived and immunocompetent lung cancer models and clinical specimens obtained from patients on targeted therapy to uncover a focal adhesion kinase (FAK)-YAP signaling axis that promotes residual disease during oncogenic EGFR-, ALK-, and KRAS-targeted therapies. FAK-YAP signaling inhibition combined with the primary targeted therapy suppressed residual drug-tolerant cells and enhanced tumor responses. This study unveils a FAK-YAP signaling module that promotes residual disease in lung cancer and mechanism-based therapeutic strategies to improve tumor response.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lung Neoplasms , Signal Transduction , Transcription Factors , YAP-Signaling Proteins , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Signal Transduction/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , YAP-Signaling Proteins/metabolism , Cell Line, Tumor , Animals , Drug Resistance, Neoplasm/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Neoplasm, Residual , Mice , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Xenograft Model Antitumor Assays
2.
Stem Cell Reports ; 18(3): 636-653, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36827975

ABSTRACT

Ancestral SARS coronavirus-2 (SARS-CoV-2) and variants of concern (VOC) caused a global pandemic with a spectrum of disease severity. The mechanistic explaining variations related to airway epithelium are relatively understudied. Here, we biobanked airway organoids (AO) by preserving stem cell function. We optimized viral infection with H1N1/PR8 and comprehensively characterized epithelial responses to SARS-CoV-2 infection in phenotypically stable AO from 20 different subjects. We discovered Tetraspanin-8 (TSPAN8) as a facilitator of SARS-CoV-2 infection. TSPAN8 facilitates SARS-CoV-2 infection rates independently of ACE2-Spike interaction. In head-to-head comparisons with Ancestral SARS-CoV-2, Delta and Omicron VOC displayed lower overall infection rates of AO but triggered changes in epithelial response. All variants shared highest tropism for ciliated and goblet cells. TSPAN8-blocking antibodies diminish SARS-CoV-2 infection and may spur novel avenues for COVID-19 therapy.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Humans , SARS-CoV-2 , Organoids , Tetraspanins/genetics
3.
bioRxiv ; 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34100012

ABSTRACT

SARS coronavirus-2 (SARS-CoV-2) is causing a global pandemic with large variation in COVID-19 disease spectrum. SARS-CoV-2 infection requires host receptor ACE2 on lung epithelium, but epithelial underpinnings of variation are largely unknown. We capitalized on comprehensive organoid assays to report remarkable variation in SARS-CoV-2 infection rates of lung organoids from different subjects. Tropism is highest for TUBA- and MUC5AC-positive organoid cells, but levels of TUBA-, MUC5A-, or ACE2- positive cells do not predict infection rate. We identify surface molecule Tetraspanin 8 (TSPAN8) as novel mediator of SARS-CoV-2 infection, which is not downregulated by this specific virus. TSPAN8 levels, prior to infection, strongly correlate with infection rate and TSPAN8-blocking antibodies diminish SARS-CoV-2 infection. We propose TSPAN8 as novel functional biomarker and potential therapeutic target for COVID-19.

4.
Cell Stem Cell ; 27(5): 840-851.e6, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32818433

ABSTRACT

Modulation of Wnt signaling has untapped potential in regenerative medicine due to its essential functions in stem cell homeostasis. However, Wnt lipidation and Wnt-Frizzled (Fzd) cross-reactivity have hindered translational Wnt applications. Here, we designed and engineered water-soluble, Fzd subtype-specific "next-generation surrogate" (NGS) Wnts that hetero-dimerize Fzd and Lrp6. NGS Wnt supports long-term expansion of multiple different types of organoids, including kidney, colon, hepatocyte, ovarian, and breast. NGS Wnts are superior to Wnt3a conditioned media in organoid expansion and single-cell organoid outgrowth. Administration of Fzd subtype-specific NGS Wnt in vivo reveals that adult intestinal crypt proliferation can be promoted by agonism of Fzd5 and/or Fzd8 receptors, while a broad spectrum of Fzd receptors can induce liver zonation. Thus, NGS Wnts offer a unified organoid expansion protocol and a laboratory "tool kit" for dissecting the functions of Fzd subtypes in stem cell biology.


Subject(s)
Frizzled Receptors , Organoids , Hepatocytes , Stem Cells , Wnt Signaling Pathway
5.
JCI Insight ; 52019 06 25.
Article in English | MEDLINE | ID: mdl-31237864

ABSTRACT

Colorectal cancer (CRC) is the third most frequent neoplastic disorder and is a main cause of tumor-related mortality as many patients progress to stage IV metastatic CRC. Standard care consists of combination chemotherapy (FOLFIRI or FOLFOX). Patients with WT KRAS typing are eligible to receive anti-EGFR therapy combined with chemotherapy. Unfortunately, predicting efficacy of CRC anti-EGFR therapy has remained challenging. Here we uncover that the EGFR-pathway component RasGRP1 acts as CRC tumor suppressor in the context of aberrant Wnt signaling. We find that RasGRP1 suppresses EGF-driven proliferation of colonic epithelial organoids. Having established that RasGRP1 dosage levels impacts biology, we focused on CRC patients next. Mining five different data platforms, we establish that RasGRP1 expression levels decrease with CRC progression and predict poor clinical outcome of patients. Lastly, deletion of one or two Rasgrp1 alleles makes CRC spheroids more susceptible to EGFR inhibition. Retrospective analysis of the CALGB80203 clinical trial shows that addition of anti-EGFR therapy to chemotherapy significantly improves outcome for CRC patients when tumors express low RasGRP1 suppressor levels. In sum, RasGRP1 is a unique biomarker positioned in the EGFR pathway and of potential relevance to anti-EGFR therapy for CRC patients.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/drug therapy , DNA-Binding Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Antineoplastic Agents, Immunological/pharmacology , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Cell Proliferation/drug effects , Cetuximab/pharmacology , Cetuximab/therapeutic use , Clinical Trials as Topic , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Computational Biology , DNA-Binding Proteins/analysis , DNA-Binding Proteins/genetics , Datasets as Topic , Disease Models, Animal , Disease Progression , Disease-Free Survival , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Guanine Nucleotide Exchange Factors/analysis , Guanine Nucleotide Exchange Factors/genetics , Humans , Kaplan-Meier Estimate , Mice , Mice, Knockout , Primary Cell Culture , Prognosis , Signal Transduction/drug effects , Spheroids, Cellular , Tumor Cells, Cultured , Tumor Suppressor Proteins/analysis , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...