Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.072
Filter
1.
Neural Regen Res ; 20(4): 1192-1206, 2025 Apr 01.
Article in English | MEDLINE | ID: mdl-38989956

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202504000-00033/figure1/v/2024-07-06T104127Z/r/image-tiff Behavioral recovery using (viable) peripheral nerve allografts to repair ablation-type (segmental-loss) peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration. Furthermore, such peripheral nerve allografts undergo immunological rejection by the host immune system. In contrast, peripheral nerve injuries repaired by polyethylene glycol fusion of peripheral nerve allografts exhibit excellent behavioral recovery within weeks, reduced immune responses, and many axons do not undergo Wallerian degeneration. The relative contribution of neurorrhaphy and polyethylene glycol-fusion of axons versus the effects of polyethylene glycol per se was unknown prior to this study. We hypothesized that polyethylene glycol might have some immune-protective effects, but polyethylene glycol-fusion was necessary to prevent Wallerian degeneration and functional/behavioral recovery. We examined how polyethylene glycol solutions per se affect functional and behavioral recovery and peripheral nerve allograft morphological and immunological responses in the absence of polyethylene glycol-induced axonal fusion. Ablation-type sciatic nerve injuries in outbred Sprague-Dawley rats were repaired according to a modified protocol using the same solutions as polyethylene glycol-fused peripheral nerve allografts, but peripheral nerve allografts were loose-sutured (loose-sutured polyethylene glycol) with an intentional gap of 1-2 mm to prevent fusion by polyethylene glycol of peripheral nerve allograft axons with host axons. Similar to negative control peripheral nerve allografts not treated by polyethylene glycol and in contrast to polyethylene glycol-fused peripheral nerve allografts, animals with loose-sutured polyethylene glycol peripheral nerve allografts exhibited Wallerian degeneration for all axons and myelin degeneration by 7 days postoperatively and did not recover sciatic-mediated behavioral functions by 42 days postoperatively. Other morphological signs of rejection, such as collapsed Schwann cell basal lamina tubes, were absent in polyethylene glycol-fused peripheral nerve allografts but commonly observed in negative control and loose-sutured polyethylene glycol peripheral nerve allografts at 21 days postoperatively. Loose-sutured polyethylene glycol peripheral nerve allografts had more pro-inflammatory and less anti-inflammatory macrophages than negative control peripheral nerve allografts. While T cell counts were similarly high in loose-sutured-polyethylene glycol and negative control peripheral nerve allografts, loose-sutured polyethylene glycol peripheral nerve allografts expressed some cytokines/chemokines important for T cell activation at much lower levels at 14 days postoperatively. MHCI expression was elevated in loose-sutured polyethylene glycol peripheral nerve allografts, but MHCII expression was modestly lower compared to negative control at 21 days postoperatively. We conclude that, while polyethylene glycol per se reduces some immune responses of peripheral nerve allografts, successful polyethylene glycol-fusion repair of some axons is necessary to prevent Wallerian degeneration of those axons and immune rejection of peripheral nerve allografts, and produce recovery of sensory/motor functions and voluntary behaviors. Translation of polyethylene glycol-fusion technologies would produce a paradigm shift from the current clinical practice of waiting days to months to repair ablation peripheral nerve injuries.

2.
Science ; : eadq0876, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39116258

ABSTRACT

Defense-associated reverse transcriptase (DRT) systems perform DNA synthesis to protect bacteria against viral infection, but the identities and functions of their DNA products remain largely unknown. Here we show that DRT2 systems encode an unprecedented immune pathway that involves de novo gene synthesis via rolling circle reverse transcription of a non-coding RNA (ncRNA). Programmed template jumping on the ncRNA generates a concatemeric cDNA, which becomes double-stranded upon viral infection. Remarkably, this DNA product constitutes a protein-coding, nearly endless ORF (neo) gene whose expression leads to potent cell growth arrest, thereby restricting the viral infection. Our work highlights an elegant expansion of genome coding potential through RNA-templated gene creation, and challenges conventional paradigms of genetic information encoded along the one-dimensional axis of genomic DNA.

3.
JAMA ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110436

ABSTRACT

Importance: E-cigarettes are the most commonly used tobacco product among adolescents. Despite known harms of nicotine exposure among teens, there are no empirically tested vaping cessation interventions. Objective: To compare the effectiveness of a text message program for nicotine vaping cessation among adolescents with assessment-only control. Design, Setting, and Participants: A parallel, 2-group, double-blind, individually randomized clinical trial with follow-ups at 1 and 7 months after randomization was conducted from October 1, 2021, to October 18, 2023. Participants were recruited via social media ads; the intervention was delivered via text message; and assessments were completed online or by telephone. Eligible individuals were US residents aged 13 to 17 years who reported past 30-day e-cigarette use, were interested in quitting within 30 days, and owned a mobile phone with an active text message plan. To optimize study retention, all participants received monthly assessments via text message about e-cigarette use. Interventions: Assessment-only controls (n = 744) received only study retention text messages. Intervention participants (n = 759) also received an automated, interactive text message program for vaping cessation that delivers cognitive and behavioral coping skills training and social support. Main Outcomes and Measures: The primary outcome was self-reported 30-day point-prevalence abstinence from vaping at 7 months analyzed as intention-to-treat, with missingness coded as vaping. Results: Among n = 1503 adolescents randomized, average age was 16.4 (SD, 0.8) years. The sample was 50.6% female, 42.1% male, and 7.4% nonbinary/other; 10.2% Black/African American, 62.6% White, 18.5% multiracial, and 8.7% another race; 16.2% Hispanic; 42.5% sexual minority; and 76.2% vaped within 30 minutes of waking. The 7-month follow-up rate was 70.8%. Point-prevalence abstinence rates were 37.8% (95% CI, 34.4%-41.3%) among intervention participants and 28.0% (95% CI, 24.9%-31.3%) among control participants (relative risk, 1.35 [95% CI, 1.17-1.57]; P < .001). No baseline variables moderated the treatment-outcome relationship. There was no evidence that adolescents who quit vaping transitioned to combustible tobacco products. Conclusions and Relevance: A tailored, interactive text message intervention increased self-reported vaping cessation rates among adolescents recruited via social media channels. Trial Registration: ClinicalTrials.gov Identifier: NCT04919590.

4.
ACS Nano ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109416

ABSTRACT

DNA-based Points Accumulation for Imaging in Nanoscale Topography (DNA-PAINT) is an effective super resolution microscopy technique, and its optimization is key to improve nanoscale detection. The state-of-the-art improvements that are at the base of this optimization have been first routinely validated on DNA nanostructure devices before being tested on biological samples. This allows researchers to finely tune DNA-PAINT imaging features in a more controllable in vitro environment. Dye-labeled oligonucleotide probes with short hybridization domains can expand DNA-PAINT's detection by targeting short nucleotide sequences and improving resolution, speed, and multiplexing. However, developing these probes is challenging as their brief bound state makes them difficult to capture under routine imaging conditions. To extend dwell binding times and promote duplex stability, we introduced structural and chemical modifications to our imager probes. The modifications included mini-hairpins and/or Bridged Nucleic Acids (BNA); both of which increase the thermomechanical stability of a DNA duplex. Using this approach we demonstrate DNA-PAINT imaging with approximately 5 nm resolution using a 4-nucleotide hybridization domain that is 43% shorter than previously reported probes. Imager probes with such short hybridization domains are key for improving detection on DNA nanostructure devices because they have the capability to target a larger number of binding domains per localization unit. This is essential for metrology applications such as Nucleic Acid Memory (NAM) where the information density is dependent on the binding site length. The selected imager probes reported here present imaging resolution equivalent to current state-of-the-art DNA-PAINT probes, creating a strategy to image shorter DNA domains for nanoscience and nanotechnology alike.

5.
Article in English | MEDLINE | ID: mdl-39103079

ABSTRACT

OBJECTIVE: Obesity increases osteoarthritis (OA) risk due to adipose tissue dysfunction with associated metabolic syndrome and excess weight. Lipodystrophy syndromes exhibit systemic metabolic and inflammatory abnormalities similar to obesity without biomechanical overloading. Here, we used lipodystrophy mouse models to investigate the effects of systemic versus intra-articular adipose tissue dysfunction on the knee. METHODS: Intra-articular adipose tissue development was studied using reporter mice. Mice with selective lipodystrophy of intra-articular adipose tissue were generated by conditional knockout (cKO) of Bscl2 in Gdf5-lineage cells, and compared with congenital Bscl2 KO mice with generalised lipodystrophy and associated systemic metabolic dysfunction. OA was induced by surgically destabilising the medial meniscus (DMM) and obesity by high-fat diet (HFD). Gene expression was analysed by quantitative RT-PCR and tissues were analysed histologically. RESULTS: The infrapatellar fat pad (IFP), in contrast to overlying subcutaneous adipose tissue, developed from a template established from the Gdf5-expressing joint interzone during late embryogenesis, and was populated shortly after birth by adipocytes stochastically arising from Pdgfrα+ Gdf5-lineage progenitors. While female Bscl2 KO mice with generalised lipodystrophy developed spontaneous knee cartilage damage, Bscl2 cKO mice with intra-articular lipodystrophy did not, despite synovial hyperplasia and inflammation of the residual IFP. Furthermore, male Bscl2 cKO mice showed no worse cartilage damage after DMM. However, female Bscl2 cKO mice with intra-articular lipodystrophy showed increased susceptibility to the cartilage damaging effects of HFD-induced obesity. CONCLUSION: Our findings emphasise the prevalent role of systemic metabolic and inflammatory effects in impairing cartilage homeostasis, with a modulatory role for intra-articular adipose tissue.

6.
Int J Sport Nutr Exerc Metab ; : 1-16, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39032921

ABSTRACT

Beta-alanine is a nonessential amino acid that is commonly used to improve exercise performance. It could influence the buffering of hydrogen ions produced during intense exercise and delay fatigue, providing a substrate for increased synthesis of intramuscular carnosine. This systematic review evaluates the effects of beta-alanine supplementation on maximal intensity exercise in trained, young, male individuals. Six databases were searched on August 10, 2023, to identify randomized, double-blinded, placebo-controlled trials investigating the effect of chronic beta-alanine supplementation in trained male individuals with an age range of 18-40 years. Studies evaluating exercise performance through maximal or supramaximal intensity efforts falling within the 0.5-10 min duration were included. A total of 18 individual studies were analyzed, employing 18 exercise test protocols and 15 outcome measures in 331 participants. A significant (p = .01) result was observed with an overall effect size of 0.39 (95% confidence interval [CI] [0.09, 0.69]), in favor of beta-alanine supplementation versus placebo. Results indicate significant effects at 4 weeks of supplementation, effect size 0.34 (95% CI [0.02, 0.67], p = .04); 4-10 min of maximal effort, effect size 0.55 (95% CI [0.07, 1.04], p = .03); and a high beta-alanine dosage of 5.6-6.4 g per day, effect size 0.35 (95% CI [0.09, 0.62], p = .009). The results provide insights into which exercise modality will benefit the most, and which dosage protocols and durations stand to provide the greatest ergogenic effects. This may be used to inform further research, and professional or recreational training design, and optimization of supplementation strategies.

7.
Clin Cancer Res ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037364

ABSTRACT

Advances in anticancer therapies have provided crucial benefits for millions of patients who are living long and fulfilling lives. While these successes should be celebrated, there is certainly room to continue improving cancer care. Increased long-term survival presents additional challenges for determining whether new therapies further extend patients' lives through clinical trials, commonly known as the gold standard endpoint of overall survival (OS). As a result, there is an increasing reliance on earlier efficacy endpoints , which may or may not correlate with OS, to continue the timely pace of translating innovation into novel therapies available for patients. Even when not powered as an efficacy endpoint, OS remains a critical indication of safety for regulatory decisions and is a key aspect of the U.S. Food and Drug Administration's Project Endpoint. Unfortunately, in the pursuit of earlier endpoints, many registrational clinical trials lack adequate planning, collection, and analysis of OS data, which complicates interpretation of a net clinical benefit or harm. This article shares best practices, proposes novel statistical methodologies, and provides detailed recommendations to improve the rigor of using OS data to inform benefit-risk assessments, including incorporating the following in clinical trials intending to demonstrate the safety and effectiveness of a cancer therapy: prospective collection of OS data, establishment of fit-for-purpose definitions of OS detriment, and prespecification of analysis plans for using OS data to evaluate for potential harm. These improvements hold promise to help regulators, patients and providers better understand the benefits and risks of novel therapies.

8.
Arthritis Res Ther ; 26(1): 135, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026358

ABSTRACT

With great interest, we have read the recent article "Expression of HIF1α in intestinal epithelium restricts arthritis inflammation by inhibiting RIPK3-induced cell death machinery" published by Lyu et al. in Annals of the Rheumatic Diseases. The authors pose that the expression of hypoxia-inducible factor 1 alpha in intestinal epithelial cells represents a crucial check point for the development of arthritis by impeding necroptosis of intestinal epithelial cells and safeguarding the intestinal barrier integrity. Previous studies suggest a potential mechanistic link between faulty intestinal barrier function and potentiation of arthritogenic immune cells. From this perspective, bolstering the intestinal barrier integrity arose as an attractive therapeutic strategy for rheumatoid arthritis.


Subject(s)
Intestinal Mucosa , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Animals , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
9.
Neurology ; 103(3): e209620, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38986057

ABSTRACT

BACKGROUND AND OBJECTIVES: The role of body mass index (BMI) in Parkinson disease (PD) is unclear. Based on the Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in PD (Courage-PD) consortium, we used 2-sample Mendelian randomization (MR) to replicate a previously reported inverse association of genetically predicted BMI with PD and investigated whether findings were robust in analyses addressing the potential for survival and incidence-prevalence biases. We also examined whether the BMI-PD relation is bidirectional by performing a reverse MR. METHODS: We used summary statistics from a genome-wide association study (GWAS) to extract the association of 501 single-nucleotide polymorphisms (SNPs) with BMI and from the Courage-PD and international Parkinson Disease Genomics Consortium (iPDGC) to estimate their association with PD. Analyses are based on participants of European ancestry. We used the inverse-weighted method to compute odds ratios (ORIVW per 4.8 kg/m2 [95% CI]) of PD and additional pleiotropy robust methods. We performed analyses stratified by age, disease duration, and sex. For reverse MR, we used SNPs associated with PD from 2 iPDGC GWAS to assess the effect of genetic liability toward PD on BMI. RESULTS: Summary statistics for BMI are based on 806,834 participants (54% women). Summary statistics for PD are based on 8,919 (40% women) cases and 7,600 (55% women) controls from Courage-PD, and 19,438 (38% women) cases and 24,388 (51% women) controls from iPDGC. In Courage-PD, we found an inverse association between genetically predicted BMI and PD (ORIVW 0.82 [0.70-0.97], p = 0.012) without evidence for pleiotropy. This association tended to be stronger in younger participants (≤67 years, ORIVW 0.71 [0.55-0.92]) and cases with shorter disease duration (≤7 years, ORIVW 0.75 [0.62-0.91]). In pooled Courage-PD + iPDGC analyses, the association was stronger in women (ORIVW 0.85 [0.74-0.99], p = 0.032) than men (ORIVW 0.92 [0.80-1.04], p = 0.18), but the interaction was not statistically significant (p-interaction = 0.48). In reverse MR, there was evidence for pleiotropy, but pleiotropy robust methods showed a significant inverse association. DISCUSSION: Using an independent data set (Courage-PD), we replicate an inverse association of genetically predicted BMI with PD, not explained by survival or incidence-prevalence biases. Moreover, reverse MR analyses support an inverse association between genetic liability toward PD and BMI, in favor of a bidirectional relation.


Subject(s)
Body Mass Index , Genome-Wide Association Study , Mendelian Randomization Analysis , Parkinson Disease , Polymorphism, Single Nucleotide , Humans , Parkinson Disease/genetics , Parkinson Disease/epidemiology , Polymorphism, Single Nucleotide/genetics , Female , Male , Middle Aged , Aged , Risk Factors
10.
Nat Cancer ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997466

ABSTRACT

Cancer evolution lays the groundwork for predictive oncology. Testing evolutionary metrics requires quantitative measurements in controlled clinical trials. We mapped genomic intratumor heterogeneity in locally advanced prostate cancer using 642 samples from 114 individuals enrolled in clinical trials with a 12-year median follow-up. We concomitantly assessed morphological heterogeneity using deep learning in 1,923 histological sections from 250 individuals. Genetic and morphological (Gleason) diversity were independent predictors of recurrence (hazard ratio (HR) = 3.12 and 95% confidence interval (95% CI) = 1.34-7.3; HR = 2.24 and 95% CI = 1.28-3.92). Combined, they identified a group with half the median time to recurrence. Spatial segregation of clones was also an independent marker of recurrence (HR = 2.3 and 95% CI = 1.11-4.8). We identified copy number changes associated with Gleason grade and found that chromosome 6p loss correlated with reduced immune infiltration. Matched profiling of relapse, decades after diagnosis, confirmed that genomic instability is a driving force in prostate cancer progression. This study shows that combining genomics with artificial intelligence-aided histopathology leads to the identification of clinical biomarkers of evolution.

11.
Brain Sci ; 14(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39061433

ABSTRACT

The purpose of our study was to obtain evidence that an unsupervised tele-exercise program (TEgroup) via an online platform is a feasible alternative to a hybrid mode of supervised and unsupervised exercise (HEgroup) sessions for improving fitness indexes, respiratory and cognitive functions, and biomarkers of oxidative stress in patients recovering from COVID-19. Forty-nine patients with long post-COVID-19 were randomly divided into two groups (HEgroup: n = 24, age 60.0 ± 9.5 years versus TEgroup: n = 25, age 58.7 ± 9.5 years). For each patient, we collected data from body composition, oxidative stress, pulmonary function, physical fitness, and cognitive function before and after the 12-week exercise rehabilitation program (ERP). Our data showed differences in both groups before and after 12-week ERP on fitness indicators, body composition, and pulmonary function indicators. Our findings demonstrated differences between groups after 12-week ERP on adjustment in the domains of cognitive function (HEgroup increased the "visuospatial" domain: 3.2 ± 1.1 versus 3.5 ± 0.8 score, p = 0.008 and TEgroup increased the "memory" domain: 3.3 ± 1.0 versus 3.8 ± 0.5 score, p = 0.003; after 12-week ERP showed differences between groups in domain "attention" TEgroup: 4.8 ± 1.5 versus HEgroup: 3.6 ± 1.8 score, p = 0.014) and the diffusing capacity for carbon monoxide (HEgroup increased the percent of predicted values at 0.5 ± 32.3% and TEgroup at 26.0 ± 33.1%, p < 0.001). These findings may be attributed to the different ways of learning exercise programs, resulting in the recruitment of different neural circuits.

12.
Int J Mol Sci ; 25(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39062978

ABSTRACT

To better understand the vulnerabilities of pregnant women during the COVID-19 pandemic, we conducted a comprehensive, retrospective cohort study to assess differences in immune responses to SARS-CoV-2 infection between pregnant and non-pregnant women. Nasopharyngeal swabs and serum specimens from 90 pregnant and 278 age-matched non-pregnant women were collected from 15 March 2020 to 23 July 2021 at NewYork-Presbyterian Queens Hospital in New York City. Multiplex reverse transcription polymerase chain reaction, neutralizing antibody, and cytokine array assays were used to assess the incidence, viral load, antibody titers and profiles, and examine cytokine expression patterns. Our results show a lower incidence of SARS-CoV-2 infection in pregnant women compared with non-pregnant women. Pregnant women infected with SARS-CoV-2 exhibited a substantially lower viral load. In addition, the levels of both anti-spike protein receptor-binding domain IgG neutralizing antibodies and anti-N Protein IgG were elevated in pregnant women. Finally, cytokine profiling revealed differential expression of leptin across cohorts. These findings suggest that pregnancy is associated with distinct immune and virological responses to SARS-CoV-2 infection, characterized by lower infection rates, substantially lower viral loads, and enhanced antibody production. Differential cytokine expression indicates unique immune modulation in pregnant women.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Cytokines , Pregnancy Complications, Infectious , SARS-CoV-2 , Viral Load , Humans , Female , Pregnancy , COVID-19/immunology , COVID-19/virology , COVID-19/blood , COVID-19/epidemiology , Cytokines/blood , Cytokines/metabolism , Adult , SARS-CoV-2/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Pregnancy Complications, Infectious/virology , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/blood , Retrospective Studies , Immunoglobulin G/blood , Immunoglobulin G/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
13.
medRxiv ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38947016

ABSTRACT

Background: Obstructive sleep apnea (OSA) negatively impacts post-stroke recovery. This study's purpose: examine the prevalence of undiagnosed OSA and describe a simple tool to identify those at-risk for OSA in the early phase of stroke recovery. Methods: This was a cross-sectional descriptive study of people ∼15 days post-stroke. Adults with stroke diagnosis admitted to inpatient rehabilitation over a 3-year period were included if they were alert/arousable, able to consent/assent to participation, and excluded if they had a pre-existing OSA diagnosis, other neurologic health conditions, recent craniectomy, global aphasia, inability to ambulate 150 feet independently pre-stroke, pregnant, or inability to understand English. OSA was deemed present if oxygen desaturation index (ODI) of >=15 resulted from overnight oximetry measures. Prevalence of OSA was determined accordingly. Four participant characteristics comprised the "BASH" tool (body mass index >=35, age>=50, sex=male, hypertension=yes). A receiver operator characteristics (ROC) curve analysis was performed with BASH as test variable and OSA presence as state variable. Results: Participants (n=123) were 50.4% male, averaged 64.12 years old (sd 14.08), and self-identified race as 75.6% White, 20.3% Black/African American, 2.4%>1 race, and 1.6% other; 22% had OSA. ROC analysis indicated BASH score >=3 predicts presence of OSA (sensitivity=0.778, specificity=0.656, area under the curve =0.746, p<0.001). Conclusions: Prevalence of undiagnosed OSA in the early stroke recovery phase is high. With detection of OSA post-stroke, it may be possible to offset untreated OSA's deleterious impact on post-stroke recovery of function. The BASH tool is an effective OSA screener for this application.

14.
BMJ Open ; 14(6): e086736, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950987

ABSTRACT

INTRODUCTION: Spirometry is a point-of-care lung function test that helps support the diagnosis and monitoring of chronic lung disease. The quality and interpretation accuracy of spirometry is variable in primary care. This study aims to evaluate whether artificial intelligence (AI) decision support software improves the performance of primary care clinicians in the interpretation of spirometry, against reference standard (expert interpretation). METHODS AND ANALYSIS: A parallel, two-group, statistician-blinded, randomised controlled trial of primary care clinicians in the UK, who refer for, or interpret, spirometry. People with specialist training in respiratory medicine to consultant level were excluded. A minimum target of 228 primary care clinician participants will be randomised with a 1:1 allocation to assess fifty de-identified, real-world patient spirometry sessions through an online platform either with (intervention group) or without (control group) AI decision support software report. Outcomes will cover primary care clinicians' spirometry interpretation performance including measures of technical quality assessment, spirometry pattern recognition and diagnostic prediction, compared with reference standard. Clinicians' self-rated confidence in spirometry interpretation will also be evaluated. The primary outcome is the proportion of the 50 spirometry sessions where the participant's preferred diagnosis matches the reference diagnosis. Unpaired t-tests and analysis of covariance will be used to estimate the difference in primary outcome between intervention and control groups. ETHICS AND DISSEMINATION: This study has been reviewed and given favourable opinion by Health Research Authority Wales (reference: 22/HRA/5023). Results will be submitted for publication in peer-reviewed journals, presented at relevant national and international conferences, disseminated through social media, patient and public routes and directly shared with stakeholders. TRIAL REGISTRATION NUMBER: NCT05933694.


Subject(s)
Artificial Intelligence , Primary Health Care , Spirometry , Humans , Spirometry/methods , Randomized Controlled Trials as Topic , Software , United Kingdom , Decision Support Systems, Clinical
15.
Hand Clin ; 40(3): 389-397, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972683

ABSTRACT

Axons successfully repaired with polyethylene glycol (PEG) fusion tecnology restored axonal continuity thereby preventing their Wallerian degeneration and minimizing muscle atrophy. PEG fusion studies in animal models and preliminary clinical trials involving patients with digital nerve repair have shown promise for this therapeutic approach. PEG fusion is safe to perform, and given the enormous potential benefits, there is no reason not to explore its therapeutic potential.


Subject(s)
Peripheral Nerve Injuries , Polyethylene Glycols , Humans , Polyethylene Glycols/therapeutic use , Polyethylene Glycols/administration & dosage , Peripheral Nerve Injuries/surgery , Animals , Nerve Regeneration
16.
Psychiatry Res ; 339: 116110, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39079375

ABSTRACT

Anhedonia and depressed mood are two cardinal symptoms of major depressive disorder (MDD). Prior work has demonstrated that cannabis consumers often endorse anhedonia and depressed mood, which may contribute to greater cannabis use (CU) over time. However, it is unclear (1) how the unique influence of anhedonia and depressed mood affect CU and (2) how these symptoms predict CU over more proximal periods of time, including the next day or week (rather than proceeding weeks or months). The current study used data collected from ecological momentary assessment (EMA) in a sample with MDD (N = 55) and employed mixed effects models to detect and predict weekly and daily CU from anhedonia and depressed mood over 90 days. Results indicated that anhedonia and depressed mood were significantly associated with CU, yet varied at daily and weekly scales. Moreover, these associations varied in both strength and directionality. In weekly models, less anhedonia and greater depressed mood were associated with greater CU, and directionality of associations were reversed in the models looking at any CU (compared to none). Findings provide evidence that anhedonia and depressed mood demonstrate complex associations with CU and emphasize leveraging EMA-based studies to understand these associations with more fine-grained detail.

17.
medRxiv ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39040198

ABSTRACT

Patients with inflammatory bowel disease (IBD) are at increased risk of colorectal cancer (CRC), and this risk increases dramatically in those who develop low-grade dysplasia (LGD). However, there is currently no accurate way to risk-stratify patients with LGD, leading to both over- and under-treatment of cancer risk. Here we show that the burden of somatic copy number alterations (CNAs) within resected LGD lesions strongly predicts future cancer development. We performed a retrospective multi-centre validated case-control study of n=122 patients (40 progressors, 82 non-progressors, 270 LGD regions). Low coverage whole genome sequencing revealed CNA burden was significantly higher in progressors than non-progressors (p=2×10-6 in discovery cohort) and was a very significant predictor of CRC risk in univariate analysis (odds ratio = 36; p=9×10-7), outperforming existing clinical risk factors such as lesion size, shape and focality. Optimal risk prediction was achieved with a multivariate model combining CNA burden with the known clinical risk factor of incomplete LGD resection. The measurement of CNAs in LGD lesions is a robust, low-cost and rapidly translatable predictor of CRC risk in IBD that can be used to direct management and so prevent CRC in high-risk individuals whilst sparing those at low-risk from unnecessary intervention.

18.
Medicina (Kaunas) ; 60(7)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39064546

ABSTRACT

Background and Objectives: Several studies suggest the complex relationship between Endothelin-1 (ET-1) levels with various types of glaucoma. This systematic review and meta-analysis explore ET-1 levels in plasma and aqueous humor among different types of glaucoma. Materials and Methods: A literature search (PubMed, ScienceDirect, Cochrane Library) was made up to April 2024 (PROSPERO: CRD42023430471). The results were synthesized according to PRISMA Guidelines. Results were presented as standardized mean differences (SMD) with 95% confidence intervals (CI). Results: A total of 2597 subjects (1513 patients with glaucoma vs. 1084 healthy controls) from 23 studies were included in a meta-analysis. Notably, patients with glaucoma reported significantly higher plasma levels of ET-1 compared to controls (SMD: 1.21, 95% CI: 0.59-1.82, p < 0.001). Particularly, plasma ET-1 levels were higher in primary open-angle glaucoma (POAG) (SMD: 0.87, 95% CI: 0.09-1.65, p < 0.05), normal-tension glaucoma (SMD: 0.86, 95% CI: 0.27-1.46, p = 0.05), and angle-closure glaucoma patients (SMD: 1.03, 95% CI: 0.43-1.63, p < 0.001) compared to healthy controls. Moreover, ET-1 aqueous humor levels were significantly higher in patients with glaucoma compared to controls (SMD: 1.60, 95% CI: 1.04-2.15, p < 0.001). In particular, aqueous humor levels were higher in POAG patients (SMD: 2.03 95% CI: 1.00-3.14, p < 0.001), and pseudoexfoliative glaucoma patients (SMD: 2.03, 95% CI: 1.00-3.07, p < 0.001) compared to controls. Conclusions: This meta-analysis indicates that elevated levels of ET-1 plasma and aqueous humor are significantly associated with different types of glaucoma. The pathogenesis of ET-1-related mechanisms may vary across different glaucoma types, indicating that possible therapeutic approaches targeting ET-1 pathways should be tailored to each specific glaucoma type.


Subject(s)
Aqueous Humor , Endothelin-1 , Glaucoma , Humans , Endothelin-1/analysis , Endothelin-1/blood , Aqueous Humor/metabolism , Aqueous Humor/chemistry , Glaucoma/blood , Glaucoma, Open-Angle/blood
19.
Science ; 385(6705): eadm8189, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38991068

ABSTRACT

TnpB nucleases represent the evolutionary precursors to CRISPR-Cas12 and are widespread in all domains of life. IS605-family TnpB homologs function as programmable RNA-guided homing endonucleases in bacteria, driving transposon maintenance through DNA double-strand break-stimulated homologous recombination. In this work, we uncovered molecular mechanisms of the transposition life cycle of IS607-family elements that, notably, also encode group I introns. We identified specific features for a candidate "IStron" from Clostridium botulinum that allow the element to carefully control the relative levels of spliced products versus functional guide RNAs. Our results suggest that IStron transcripts evolved an ability to balance competing and mutually exclusive activities that promote selfish transposon spread while limiting adverse fitness costs on the host. Collectively, this work highlights molecular innovation in the multifunctional utility of transposon-encoded noncoding RNAs.


Subject(s)
Bacterial Proteins , CRISPR-Associated Proteins , Clostridium botulinum , DNA Transposable Elements , Endodeoxyribonucleases , Introns , RNA, Guide, CRISPR-Cas Systems , CRISPR-Cas Systems , Homologous Recombination , RNA Splicing , RNA, Guide, CRISPR-Cas Systems/genetics , Transposases/metabolism , Transposases/genetics , Clostridium botulinum/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism
20.
Cell Rep Methods ; 4(7): 100818, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38986614

ABSTRACT

Protein-protein interactions play an important biological role in every aspect of cellular homeostasis and functioning. Proximity labeling mass spectrometry-based proteomics overcomes challenges typically associated with other methods and has quickly become the current state of the art in the field. Nevertheless, tight control of proximity-labeling enzymatic activity and expression levels is crucial to accurately identify protein interactors. Here, we leverage a T2A self-cleaving peptide and a non-cleaving mutant to accommodate the protein of interest in the experimental and control TurboID setup. To allow easy and streamlined plasmid assembly, we built a Golden Gate modular cloning system to generate plasmids for transient expression and stable integration. To highlight our T2A Split/link design, we applied it to identify protein interactions of the glucocorticoid receptor and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid and non-structural protein 7 (NSP7) proteins by TurboID proximity labeling. Our results demonstrate that our T2A split/link provides an opportune control that builds upon previously established control requirements in the field.


Subject(s)
Peptides , Proteomics , SARS-CoV-2 , Proteomics/methods , Humans , SARS-CoV-2/metabolism , SARS-CoV-2/genetics , Peptides/metabolism , Peptides/chemistry , COVID-19/metabolism , COVID-19/virology , HEK293 Cells , Receptors, Glucocorticoid/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/chemistry , Plasmids/genetics , Plasmids/metabolism , Mass Spectrometry/methods , Phosphoproteins/metabolism , Phosphoproteins/genetics , Protein Interaction Mapping/methods
SELECTION OF CITATIONS
SEARCH DETAIL