Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Diabetes Care ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949847

ABSTRACT

OBJECTIVE: To explore if oral insulin could delay onset of stage 3 type 1 diabetes (T1D) among patients with stage 1/2 who carry HLA DR4-DQ8 and/or have elevated levels of IA-2 autoantibodies (IA-2As). RESEARCH AND METHODS: Next-generation targeted sequencing technology was used to genotype eight HLA class II genes (DQA1, DQB1, DRB1, DRB3, DRB4, DRB5, DPA1, and DPB1) in 546 participants in the TrialNet oral insulin preventative trial (TN07). Baseline levels of autoantibodies against insulin (IAA), GAD65 (GADA), and IA-2A were determined prior to treatment assignment. Available clinical and demographic covariables from TN07 were used in this post hoc analysis with the Cox regression model to quantify the preventive efficacy of oral insulin. RESULTS: Oral insulin reduced the frequency of T1D onset among participants with elevated IA-2A levels (HR 0.62; P = 0.012) but had no preventive effect among those with low IA-2A levels (HR 1.03; P = 0.91). High IA-2A levels were positively associated with the HLA DR4-DQ8 haplotype (OR 1.63; P = 6.37 × 10-6) and negatively associated with the HLA DR7-containing DRB1*07:01-DRB4*01:01-DQA1*02:01-DQB1*02:02 extended haplotype (OR 0.49; P = 0.037). Among DR4-DQ8 carriers, oral insulin delayed the progression toward stage 3 T1D onset (HR 0.59; P = 0.027), especially if participants also had high IA-2A level (HR 0.50; P = 0.028). CONCLUSIONS: These results suggest the presence of a T1D endotype characterized by HLA DR4-DQ8 and/or elevated IA-2A levels; for those patients with stage 1/2 disease with such an endotype, oral insulin delays the clinical T1D onset.

2.
Diabetes Care ; 47(5): 826-834, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38498185

ABSTRACT

OBJECTIVE: To explore associations of HLA class II genes (HLAII) with the progression of islet autoimmunity from asymptomatic to symptomatic type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS: Next-generation targeted sequencing was used to genotype eight HLAII genes (DQA1, DQB1, DRB1, DRB3, DRB4, DRB5, DPA1, DPB1) in 1,216 participants from the Diabetes Prevention Trial-1 and Randomized Diabetes Prevention Trial with Oral Insulin sponsored by TrialNet. By the linkage disequilibrium, DQA1 and DQB1 are haplotyped to form DQ haplotypes; DP and DR haplotypes are similarly constructed. Together with available clinical covariables, we applied the Cox regression model to assess HLAII immunogenic associations with the disease progression. RESULTS: First, the current investigation updated the previously reported genetic associations of DQA1*03:01-DQB1*03:02 (hazard ratio [HR] = 1.25, P = 3.50*10-3) and DQA1*03:03-DQB1*03:01 (HR = 0.56, P = 1.16*10-3), and also uncovered a risk association with DQA1*05:01-DQB1*02:01 (HR = 1.19, P = 0.041). Second, after adjusting for DQ, DPA1*02:01-DPB1*11:01 and DPA1*01:03-DPB1*03:01 were found to have opposite associations with progression (HR = 1.98 and 0.70, P = 0.021 and 6.16*10-3, respectively). Third, DRB1*03:01-DRB3*01:01 and DRB1*03:01-DRB3*02:02, sharing the DRB1*03:01, had opposite associations (HR = 0.73 and 1.44, P = 0.04 and 0.019, respectively), indicating a role of DRB3. Meanwhile, DRB1*12:01-DRB3*02:02 and DRB1*01:03 alone were found to associate with progression (HR = 2.6 and 2.32, P = 0.018 and 0.039, respectively). Fourth, through enumerating all heterodimers, it was found that both DQ and DP could exhibit associations with disease progression. CONCLUSIONS: These results suggest that HLAII polymorphisms influence progression from islet autoimmunity to T1D among at-risk subjects with islet autoantibodies.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/prevention & control , Seroconversion , Genotype , Haplotypes , Disease Progression , HLA-DRB1 Chains/genetics , HLA-DQ beta-Chains/genetics , Alleles , Gene Frequency
4.
HLA ; 102(2): 179-191, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36960942

ABSTRACT

The gene complex located on chromosome 19q13.4 encodes the Killer-cell Immunoglobulin-like Receptors (KIRs), which exhibit remarkable polymorphism in both gene content and sequences. Further, the repertoire of KIR genes varies within and between populations, creating a diverse pool of KIR genotypes. This study was carried out to characterize KIR genotypes and haplotypes among 379 Arab Kuwaiti individuals including 60 subjects from 20 trio families, 49 hematopoietic cell transplantation (HCT) recipients and 270 healthy Kuwaiti volunteer HCT donors. KIR Genotyping was performed by a combination of reverse sequence specific oligonucleotide probes (rSSO) and/or Real Time PCR. The frequencies of KIR genes in 270 healthy Kuwaiti volunteer donors were compared to previously reported frequencies in other populations. In addition, we compared the differences in KIR repertoire of patients and healthy donors to investigate the reproducibility of previously reported significant differences between patients with hematological malignancies and healthy donors. The observed frequencies in our cohort volunteer HCT donors was comparable to those reported in neighboring Arab populations. The activating genes KIR2DS1, KIR2DS5 and KIR3DS1 and the inhibitory gene KIR2DL5 were significantly more frequent in patients compared to healthy donors, however, none of the previously reported differences were reproducible in our Kuwaiti cohort. This report is the first description of KIR gene carrier frequency and haplotype characterization in a fairly large cohort of the Kuwaiti population, which may have implications in KIR based HCT donor selection strategies.


Subject(s)
Hematopoietic Stem Cell Transplantation , Receptors, KIR , Humans , Alleles , Gene Frequency , Genotype , Haplotypes , Kuwait , Receptors, KIR/genetics , Reproducibility of Results , Transplant Recipients
5.
JAMA Netw Open ; 6(2): e230191, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36809468

ABSTRACT

Importance: Earlier detection of emerging novel SARS-COV-2 variants is important for public health surveillance of potential viral threats and for earlier prevention research. Artificial intelligence may facilitate early detection of SARS-CoV2 emerging novel variants based on variant-specific mutation haplotypes and, in turn, be associated with enhanced implementation of risk-stratified public health prevention strategies. Objective: To develop a haplotype-based artificial intelligence (HAI) model for identifying novel variants, including mixture variants (MVs) of known variants and new variants with novel mutations. Design, Setting, and Participants: This cross-sectional study used serially observed viral genomic sequences globally (prior to March 14, 2022) to train and validate the HAI model and used it to identify variants arising from a prospective set of viruses from March 15 to May 18, 2022. Main Outcomes and Measures: Viral sequences, collection dates, and locations were subjected to statistical learning analysis to estimate variant-specific core mutations and haplotype frequencies, which were then used to construct an HAI model to identify novel variants. Results: Through training on more than 5 million viral sequences, an HAI model was built, and its identification performance was validated on an independent validation set of more than 5 million viruses. Its identification performance was assessed on a prospective set of 344 901 viruses. In addition to achieving an accuracy of 92.8% (95% CI within 0.1%), the HAI model identified 4 Omicron MVs (Omicron-Alpha, Omicron-Delta, Omicron-Epsilon, and Omicron-Zeta), 2 Delta MVs (Delta-Kappa and Delta-Zeta), and 1 Alpha-Epsilon MV, among which Omicron-Epsilon MVs were most frequent (609/657 MVs [92.7%]). Furthermore, the HAI model found that 1699 Omicron viruses had unidentifiable variants given that these variants acquired novel mutations. Lastly, 524 variant-unassigned and variant-unidentifiable viruses carried 16 novel mutations, 8 of which were increasing in prevalence percentages as of May 2022. Conclusions and Relevance: In this cross-sectional study, an HAI model found SARS-COV-2 viruses with MV or novel mutations in the global population, which may require closer examination and monitoring. These results suggest that HAI may complement phylogenic variant assignment, providing additional insights into emerging novel variants in the population.


Subject(s)
Artificial Intelligence , COVID-19 , Humans , Cross-Sectional Studies , Haplotypes , Prospective Studies , RNA, Viral , SARS-CoV-2 , Mutation
6.
J Clin Invest ; 133(4)2023 02 15.
Article in English | MEDLINE | ID: mdl-36787249

ABSTRACT

BACKGROUNDMosaic and consensus HIV-1 immunogens provide two distinct approaches to elicit greater breadth of coverage against globally circulating HIV-1 and have shown improved immunologic breadth in nonhuman primate models.METHODSThis double-blind randomized trial enrolled 105 healthy HIV-uninfected adults who received 3 doses of either a trivalent global mosaic, a group M consensus (CON-S), or a natural clade B (Nat-B) gp160 env DNA vaccine followed by 2 doses of a heterologous modified vaccinia Ankara-vectored HIV-1 vaccine or placebo. We performed prespecified blinded immunogenicity analyses at day 70 and day 238 after the first immunization. T cell responses to vaccine antigens and 5 heterologous Env variants were fully mapped.RESULTSEnv-specific CD4+ T cell responses were induced in 71% of the mosaic vaccine recipients versus 48% of the CON-S recipients and 48% of the natural Env recipients. The mean number of T cell epitopes recognized was 2.5 (95% CI, 1.2-4.2) for mosaic recipients, 1.6 (95% CI, 0.82-2.6) for CON-S recipients, and 1.1 (95% CI, 0.62-1.71) for Nat-B recipients. Mean breadth was significantly greater in the mosaic group than in the Nat-B group using overall (P = 0.014), prime-matched (P = 0.002), heterologous (P = 0.046), and boost-matched (P = 0.009) measures. Overall T cell breadth was largely due to Env-specific CD4+ T cell responses.CONCLUSIONPriming with a mosaic antigen significantly increased the number of epitopes recognized by Env-specific T cells and enabled more, albeit still limited, cross-recognition of heterologous variants. Mosaic and consensus immunogens are promising approaches to address global diversity of HIV-1.TRIAL REGISTRATIONClinicalTrials.gov NCT02296541.FUNDINGUS NIH grants UM1 AI068614, UM1 AI068635, UM1 AI068618, UM1 AI069412, UL1 RR025758, P30 AI064518, UM1 AI100645, and UM1 AI144371, and Bill & Melinda Gates Foundation grant OPP52282.


Subject(s)
AIDS Vaccines , HIV Infections , Vaccines, DNA , Animals , Consensus , Immunity, Cellular , Vaccination , Vaccinia virus , HIV Antibodies
7.
Cell Host Microbe ; 31(1): 97-111.e12, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36347257

ABSTRACT

Humanity has faced three recent outbreaks of novel betacoronaviruses, emphasizing the need to develop approaches that broadly target coronaviruses. Here, we identify 55 monoclonal antibodies from COVID-19 convalescent donors that bind diverse betacoronavirus spike proteins. Most antibodies targeted an S2 epitope that included the K814 residue and were non-neutralizing. However, 11 antibodies targeting the stem helix neutralized betacoronaviruses from different lineages. Eight antibodies in this group, including the six broadest and most potent neutralizers, were encoded by IGHV1-46 and IGKV3-20. Crystal structures of three antibodies of this class at 1.5-1.75-Å resolution revealed a conserved mode of binding. COV89-22 neutralized SARS-CoV-2 variants of concern including Omicron BA.4/5 and limited disease in Syrian hamsters. Collectively, these findings identify a class of IGHV1-46/IGKV3-20 antibodies that broadly neutralize betacoronaviruses by targeting the stem helix but indicate these antibodies constitute a small fraction of the broadly reactive antibody response to betacoronaviruses after SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Antibodies, Monoclonal , Disease Outbreaks , Mesocricetus , Antibodies, Viral , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus/genetics
8.
Commun Biol ; 5(1): 1387, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36536032

ABSTRACT

Rhesus cytomegalovirus (RhCMV)-based vaccination against Simian Immunodeficiency virus (SIV) elicits MHC-E-restricted CD8+ T cells that stringently control SIV infection in ~55% of vaccinated rhesus macaques (RM). However, it is unclear how accurately the RM model reflects HLA-E immunobiology in humans. Using long-read sequencing, we identified 16 Mamu-E isoforms and all Mamu-E splicing junctions were detected among HLA-E isoforms in humans. We also obtained the complete Mamu-E genomic sequences covering the full coding regions of 59 RM from a RhCMV/SIV vaccine study. The Mamu-E gene was duplicated in 32 (54%) of 59 RM. Among four groups of Mamu-E alleles: three ~5% divergent full-length allele groups (G1, G2, G2_LTR) and a fourth monomorphic group (G3) with a deletion encompassing the canonical Mamu-E exon 6, the presence of G2_LTR alleles was significantly (p = 0.02) associated with the lack of RhCMV/SIV vaccine protection. These genomic resources will facilitate additional MHC-E targeted translational research.


Subject(s)
Alternative Splicing , Cytomegalovirus Vaccines , Histocompatibility Antigens Class I , Animals , Humans , Cytomegalovirus , Genetic Variation , Macaca mulatta , Simian Immunodeficiency Virus , Histocompatibility Antigens Class I/genetics , HLA-E Antigens
9.
Sci Rep ; 12(1): 19089, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36352021

ABSTRACT

Extensive mutations in the Omicron spike protein appear to accelerate the transmission of SARS-CoV-2, and rapid infections increase the odds that additional mutants will emerge. To build an investigative framework, we have applied an unsupervised machine learning approach to 4296 Omicron viral genomes collected and deposited to GISAID as of December 14, 2021, and have identified a core haplotype of 28 polymutants (A67V, T95I, G339D, R346K, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, K796Y, N856K, Q954H, N69K, L981F) in the spike protein and a separate core haplotype of 17 polymutants in non-spike genes: (K38, A1892) in nsp3, T492 in nsp4, (P132, V247, T280, S284) in 3C-like proteinase, I189 in nsp6, P323 in RNA-dependent RNA polymerase, I42 in Exonuclease, T9 in envelope protein, (D3, Q19, A63) in membrane glycoprotein, and (P13, R203, G204) in nucleocapsid phosphoprotein. Using these core haplotypes as reference, we have identified four newly emerging polymutants (R346, A701, I1081, N1192) in the spike protein (p value = 9.37*10-4, 1.0*10-15, 4.76*10-7 and 1.56*10-4, respectively), and five additional polymutants in non-spike genes (D343G in nucleocapsid phosphoprotein, V1069I in nsp3, V94A in nsp4, F694Y in the RNA-dependent RNA polymerase and L106L/F of ORF3a) that exhibit significant increasing trajectories (all p values < 1.0*10-15). In the absence of relevant clinical data for these newly emerging mutations, it is important to monitor them closely. Two emerging mutations may be of particular concern: the N1192S mutation in spike protein locates in an extremely highly conserved region of all human coronaviruses that is integral to the viral fusion process, and the F694Y mutation in the RNA polymerase may induce conformational changes that could impact remdesivir binding.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/genetics , Unsupervised Machine Learning , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/genetics , RNA-Dependent RNA Polymerase , Mutation , Phosphoproteins/genetics
10.
HLA ; 100(5): 479-490, 2022 11.
Article in English | MEDLINE | ID: mdl-36227705

ABSTRACT

Dogs have served as one of the most reliable preclinical models for a variety of diseases and treatments, including stem/progenitor cell transplantation. At the genetic epicenter of dog transplantation models, polymorphic major histocompatibility complex (MHC) genes are most impactful on transplantation success. Among the canine class I and class II genes, DLA-88 has been best studied in transplantation matching and outcomes, with 129 DLA-88 alleles identified. In this study we developed and tested a next generation (NGS) sequencing protocol for rapid identification of DLA-88 genotypes in dogs and compared the workflow and data generated with an established DLA-88 Sanger sequencing protocol that has been in common prior use for clinical studies. By testing the NGS protocol on a random population of 382 dogs, it was possible to demonstrate superior efficacy based on laboratory execution and overall cost. In addition, NGS proved far more effective at discovering new alleles and detecting multiple alleles associated with gene duplication. A total of 51 new DLA-88 alleles are reported here. This rate of new allele discovery indicates that a large pool of yet un-discovered DLA-88 alleles exists in the domestic dog population. In addition, more than 46% of dogs carried three or more copies of DLA-88, further emphasizing the need for more sensitive and cost-effective DLA typing methodology for the dog clinical model.


Subject(s)
Gene Duplication , Histocompatibility Antigens Class I , Alleles , Animals , Dogs , Genotype , High-Throughput Nucleotide Sequencing , Histocompatibility Antigens Class I/genetics
11.
JAMA Netw Open ; 5(9): e2230293, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36069983

ABSTRACT

Importance: With timely collection of SARS-CoV-2 viral genome sequences, it is important to apply efficient data analytics to detect emerging variants at the earliest time. Objective: To evaluate the application of a statistical learning strategy (SLS) to improve early detection of novel SARS-CoV-2 variants using viral sequence data from global surveillance. Design, Setting, and Participants: This case series applied an SLS to viral genomic sequence data collected from 63 686 individuals in Africa and 531 827 individuals in the United States with SARS-CoV-2. Data were collected from January 1, 2020, to December 28, 2021. Main Outcomes and Measures: The outcome was an indicator of Omicron variant derived from viral sequences. Centering on a temporally collected outcome, the SLS used the generalized additive model to estimate locally averaged Omicron caseload percentages (OCPs) over time to characterize Omicron expansion and to estimate when OCP exceeded 10%, 25%, 50%, and 75% of the caseload. Additionally, an unsupervised learning technique was applied to visualize Omicron expansions, and temporal and spatial distributions of Omicron cases were investigated. Results: In total, there were 2698 cases of Omicron in Africa and 12 141 in the United States. The SLS found that Omicron was detectable in South Africa as early as December 31, 2020. With 10% OCP as a threshold, it may have been possible to declare Omicron a variant of concern as early as November 4, 2021, in South Africa. In the United States, the application of SLS suggested that the first case was detectable on November 21, 2021. Conclusions and Relevance: The application of SLS demonstrates how the Omicron variant may have emerged and expanded in Africa and the United States. Earlier detection could help the global effort in disease prevention and control. To optimize early detection, efficient data analytics, such as SLS, could assist in the rapid identification of new variants as soon as they emerge, with or without lineages designated, using viral sequence data from global surveillance.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral/genetics , Humans , Mutation , SARS-CoV-2/genetics , South Africa , United States/epidemiology
12.
Int J Immunogenet ; 49(5): 333-339, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35959717

ABSTRACT

Multiple sclerosis (MS) is a chronic neurological disease believed to be caused by autoimmune pathogenesis. The aetiology is likely explained by a complex interplay between inherited and environmental factors. Genetic investigations into MS have been conducted for over 50 years, yielding >100 associations to date. Globally, the strongest linkage is with the human leukocyte antigen (HLA) HLA-DRB5*01:01:01-DRB1*15:01:01-DQA1*01:02:01-DQB1*06:02:01 haplotype. Here, high-resolution sequencing of HLA was used to determine the alleles of DRB3, DRB4, DRB5, DRB1, DQA1, DQB1, DPA1 and DPB1 as well as their extended haplotypes and genotypes in 100 Swedish MS patients. Results were compared to 636 population controls. The heterogeneity in HLA associations with MS was demonstrated; among 100 patients, 69 extended HLA-DR-DQ genotypes were found. Three extended HLA-DR-DQ genotypes were found to be correlated to MS; HLA-DRB5*01:01:01-DRB1*15:01:01-DQA1*01:02:01-DQB1*06:02:01 haplotype together with (A) HLA-DRB4*01:01:01//DRB4*01:01:01:01-DRB1*07:01:01-DQA1*02:01//02:01:01-DQB1*02:02:01, (B) HLA-DRBX*null-DRB1*08:01:01-DQA1*04:01:01-DQB1*04:02:01, and (C) HLA-DRB3*01:01:02-DRB1*03:01:01-DQA1*05:01:01-DQB1*02:01:01. At the allelic level, HLA-DRB3*01:01:02 was considered protective against MS. However, when combined with HLA-DRB3*01:01:02-DRB1*03:01:01-DQA1*05:01:01-DQB1*02:01:01, this extended haplotype was considered a predisposing risk factor. This highlights the limitations as included with investigations of single alleles relative to those of extended haplotypes/genotypes. In conclusion, with 69 genotypes presented among 100 patients, high-resolution sequencing was conducted to underscore the wide polymorphisms present among MS patients. Additional studies in larger cohorts will be of importance to define MS among the patient group not associated with HLA-DRB5*01:01:01-DRB1*15:01:01-DQA1*01:02:01-DQB1*06:02:01.


Subject(s)
Multiple Sclerosis , HLA Antigens , HLA-DQ alpha-Chains/genetics , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , HLA-DRB3 Chains/genetics , HLA-DRB5 Chains/genetics , Haplotypes , Humans , Multiple Sclerosis/genetics , Sweden
13.
Am J Obstet Gynecol ; 227(4): 641.e1-641.e13, 2022 10.
Article in English | MEDLINE | ID: mdl-35863458

ABSTRACT

BACKGROUND: The extravillous trophoblast expresses each of the nonclassical major histocompatibility complex class I antigens-human leukocyte antigens E, F, and G-and a single classical class I antigen, human leukocyte antigen C. We recently demonstrated dynamic expression patterns of human leukocyte antigens C, G, and F during early extravillous trophoblast invasion and placentation. OBJECTIVE: This study aimed to investigate the hypothesis that the immune inflammatory mediated complications of pregnancy such as early preeclampsia and preterm labor may show altered expression profiles of nonclassical human leukocyte antigens. STUDY DESIGN: Real-time quantitative polymerase chain reaction, western blot, and immunohistochemistry were performed on placental villous tissues and basal plate sections from term nonlaboring deliveries, preterm deliveries, and severe early-onset preeclampsia, both with and without small-for-gestational-age neonates. RESULTS: Human leukocyte antigen G is strongly and exclusively expressed by the extravillous trophoblast within the placental basal plate, and its levels increase in pregnancies complicated by severe early-onset preeclampsia with small-for-gestational-age neonates relative to those of healthy term controls. Human leukocyte antigen C shows a similar profile in the extravillous trophoblast of preeclamptic pregnancies, but significantly decreases in the villous placenta. Human leukocyte antigen F protein levels are decreased in both extravillous trophoblast and villous placenta of severe early-onset preeclamptic pregnancies, both with and without small-for-gestational-age neonates, compared with those found in term and preterm birth deliveries. Human leukocyte antigen E decreases in blood vessels in placentas from preeclamptic pregnancies relative to its levels in term and preterm birth deliveries. Placental levels of human leukocyte antigens F and C are increased in cases of preterm birth with chorioamnionitis relative to those of cases of idiopathic preterm birth. CONCLUSION: Dysregulation of placental human leukocyte antigen expression at the maternal-fetal interface may contribute to compromised maternal tolerance in preterm birth with chorioamnionitis and excessive maternal systemic inflammation associated with severe early-onset preeclampsia.


Subject(s)
Chorioamnionitis , Pre-Eclampsia , Premature Birth , Chorioamnionitis/metabolism , Female , Fetal Growth Retardation/metabolism , HLA-C Antigens/metabolism , HLA-G Antigens/metabolism , Histocompatibility Antigens Class I , Humans , Infant, Newborn , Placenta/metabolism , Placentation , Pre-Eclampsia/metabolism , Pregnancy , Premature Birth/metabolism , Trophoblasts/metabolism , HLA-E Antigens
14.
Science ; 377(6607): 728-735, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35857439

ABSTRACT

The potential for future coronavirus outbreaks highlights the need to broadly target this group of pathogens. We used an epitope-agnostic approach to identify six monoclonal antibodies that bind to spike proteins from all seven human-infecting coronaviruses. All six antibodies target the conserved fusion peptide region adjacent to the S2' cleavage site. COV44-62 and COV44-79 broadly neutralize alpha- and betacoronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants BA.2 and BA.4/5, albeit with lower potency than receptor binding domain-specific antibodies. In crystal structures of COV44-62 and COV44-79 antigen-binding fragments with the SARS-CoV-2 fusion peptide, the fusion peptide epitope adopts a helical structure and includes the arginine residue at the S2' cleavage site. COV44-79 limited disease caused by SARS-CoV-2 in a Syrian hamster model. These findings highlight the fusion peptide as a candidate epitope for next-generation coronavirus vaccine development.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19 , Epitopes , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Epitopes/chemistry , Epitopes/immunology , Humans , Peptides/immunology , Protein Conformation, alpha-Helical , Protein Domains , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
15.
Diabetes Care ; 45(7): 1610-1620, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35621697

ABSTRACT

OBJECTIVE: The purpose was to test the hypothesis that the HLA-DQαß heterodimer structure is related to the progression of islet autoimmunity from asymptomatic to symptomatic type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS: Next-generation targeted sequencing was used to genotype HLA-DQA1-B1 class II genes in 670 subjects in the Diabetes Prevention Trial-Type 1 (DPT-1). Coding sequences were translated into DQ α- and ß-chain amino acid residues and used in hierarchically organized haplotype (HOH) association analysis to identify motifs associated with diabetes onset. RESULTS: The opposite diabetes risks were confirmed for HLA DQA1*03:01-B1*03:02 (hazard ratio [HR] 1.36; P = 2.01 ∗ 10-3) and DQA1*03:03-B1*03:01 (HR 0.62; P = 0.037). The HOH analysis uncovered residue -18ß in the signal peptide and ß57 in the ß-chain to form six motifs. DQ*VA was associated with faster (HR 1.49; P = 6.36 ∗ 10-4) and DQ*AD with slower (HR 0.64; P = 0.020) progression to diabetes onset. VA/VA, representing DQA1*03:01-B1*03:02 (DQ8/8), had a greater HR of 1.98 (P = 2.80 ∗ 10-3). The DQ*VA motif was associated with both islet cell antibodies (P = 0.023) and insulin autoantibodies (IAAs) (P = 3.34 ∗ 10-3), while the DQ*AD motif was associated with a decreased IAA frequency (P = 0.015). Subjects with DQ*VA and DQ*AD experienced, respectively, increasing and decreasing trends of HbA1c levels throughout the follow-up. CONCLUSIONS: HLA-DQ structural motifs appear to modulate progression from islet autoimmunity to diabetes among at-risk relatives with islet autoantibodies. Residue -18ß within the signal peptide may be related to levels of protein synthesis and ß57 to stability of the peptide-DQab trimolecular complex.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Autoantibodies , Autoimmunity/genetics , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/prevention & control , Genetic Predisposition to Disease , HLA-DQ Antigens/genetics , HLA-DQ alpha-Chains/genetics , HLA-DQ beta-Chains/genetics , Haplotypes , Humans , Protein Sorting Signals/genetics
16.
bioRxiv ; 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35441178

ABSTRACT

The potential for future coronavirus outbreaks highlights the need to develop strategies and tools to broadly target this group of pathogens. Here, using an epitope-agnostic approach, we identified six monoclonal antibodies that bound to spike proteins from all seven human-infecting coronaviruses. Epitope mapping revealed that all six antibodies target the conserved fusion peptide region adjacent to the S2' cleavage site. Two antibodies, COV44-62 and COV44-79, broadly neutralize a range of alpha and beta coronaviruses, including SARS-CoV-2 Omicron subvariants BA.1 and BA.2, albeit with lower potency than RBD-specific antibodies. In crystal structures of Fabs COV44-62 and COV44-79 with the SARS-CoV-2 fusion peptide, the fusion peptide epitope adopts a helical structure and includes the arginine at the S2' cleavage site. Importantly, COV44-79 limited disease caused by SARS-CoV-2 in a Syrian hamster model. These findings identify the fusion peptide as the target of the broadest neutralizing antibodies in an epitope-agnostic screen, highlighting this site as a candidate for next-generation coronavirus vaccine development. One-Sentence Summary: Rare monoclonal antibodies from COVID-19 convalescent individuals broadly neutralize coronaviruses by targeting the fusion peptide.

17.
JCI Insight ; 7(6)2022 03 22.
Article in English | MEDLINE | ID: mdl-35133988

ABSTRACT

SARS-CoV-2 provokes a robust T cell response. Peptide-based studies exclude antigen processing and presentation biology, which may influence T cell detection studies. To focus on responses to whole virus and complex antigens, we used intact SARS-CoV-2 and full-length proteins with DCs to activate CD8 and CD4 T cells from convalescent people. T cell receptor (TCR) sequencing showed partial repertoire preservation after expansion. Resultant CD8 T cells recognize SARS-CoV-2-infected respiratory tract cells, and CD4 T cells detect inactivated whole viral antigen. Specificity scans with proteome-covering protein/peptide arrays show that CD8 T cells are oligospecific per subject and that CD4 T cell breadth is higher. Some CD4 T cell lines enriched using SARS-CoV-2 cross-recognize whole seasonal coronavirus (sCoV) antigens, with protein, peptide, and HLA restriction validation. Conversely, recognition of some epitopes is eliminated for SARS-CoV-2 variants, including spike (S) epitopes in the Alpha, Beta, Gamma, and Delta variant lineages.

19.
medRxiv ; 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35118477

ABSTRACT

SARS-CoV-2 provokes a brisk T cell response. Peptide-based studies exclude antigen processing and presentation biology and may influence T cell detection studies. To focus on responses to whole virus and complex antigens, we used intact SARS-CoV-2 and full-length proteins with DC to activate CD8 and CD4 T cells from convalescent persons. T cell receptor (TCR) sequencing showed partial repertoire preservation after expansion. Resultant CD8 T cells recognize SARS-CoV-2-infected respiratory cells, and CD4 T cells detect inactivated whole viral antigen. Specificity scans with proteome-covering protein/peptide arrays show that CD8 T cells are oligospecific per subject and that CD4 T cell breadth is higher. Some CD4 T cell lines enriched using SARS-CoV-2 cross-recognize whole seasonal coronavirus (sCoV) antigens, with protein, peptide, and HLA restriction validation. Conversely, recognition of some epitopes is eliminated for SARS-CoV-2 variants, including spike (S) epitopes in the alpha, beta, gamma, and delta variant lineages.

20.
Sci Rep ; 12(1): 1206, 2022 01 24.
Article in English | MEDLINE | ID: mdl-35075180

ABSTRACT

SARS-CoV-2 is spreading worldwide with continuously evolving variants, some of which occur in the Spike protein and appear to increase viral transmissibility. However, variants that cause severe COVID-19 or lead to other breakthroughs have not been well characterized. To discover such viral variants, we assembled a cohort of 683 COVID-19 patients; 388 inpatients ("cases") and 295 outpatients ("controls") from April to August 2020 using electronically captured COVID test request forms and sequenced their viral genomes. To improve the analytical power, we accessed 7137 viral sequences in Washington State to filter out viral single nucleotide variants (SNVs) that did not have significant expansions over the collection period. Applying this filter led to the identification of 53 SNVs that were statistically significant, of which 13 SNVs each had 3 or more variant copies in the discovery cohort. Correlating these selected SNVs with case/control status, eight SNVs were found to significantly associate with inpatient status (q-values < 0.01). Using temporal synchrony, we identified a four SNV-haplotype (t19839-g28881-g28882-g28883) that was significantly associated with case/control status (Fisher's exact p = 2.84 × 10-11). This haplotype appeared in April 2020, peaked in June, and persisted into January 2021. The association was replicated (OR = 5.46, p-value = 4.71 × 10-12) in an independent cohort of 964 COVID-19 patients (June 1, 2020 to March 31, 2021). The haplotype included a synonymous change N73N in endoRNase, and three non-synonymous changes coding residues R203K, R203S and G204R in the nucleocapsid protein. This discovery points to the potential functional role of the nucleocapsid protein in triggering "cytokine storms" and severe COVID-19 that led to hospitalization. The study further emphasizes a need for tracking and analyzing viral sequences in correlations with clinical status.


Subject(s)
COVID-19 , Haplotypes , Hospitalization , Mutation , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/genetics , COVID-19/therapy , Female , Humans , Male , Washington/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL