Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Mycotoxin Res ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743341

ABSTRACT

Ochratoxin A (OTA) is known to be strongly bound to serum albumin, but it remains unknown how albumin affects its metabolism and kinetics. To close this gap, we used a mouse model, where heterozygous albumin deletion reduces serum albumin to concentrations similar to hypoalbuminemic patients and completely eliminates albumin by a homozygous knockout. OTA and its potential metabolites (OTα, 4-OH-OTA, 7'-OH-OTA, OTHQ, OP-OTA, OTB-GSH, OTB-NAC, OTB) were time-dependently analyzed in plasma, bile, and urine by LC-MS/MS and were compared to previously published hepatotoxicity and nephrotoxicity data. Homozygous albumin deletion strongly accelerated plasma clearance as well as biliary and urinary excretion of the parent compound and its hydroxylation products. Decreasing albumin in mice by the heterozygous and even more by the homozygous knockout leads to an increase in the parent compound in urine which corresponded to increased nephrotoxicity. The role of albumin in OTA-induced hepatotoxicity is more complex, since heterozygous but not homozygous nor wild-type mice showed a strong biliary increase in the toxic open lactone OP-OTA. Correspondingly, OTA-induced hepatotoxicity was higher in heterozygous than in wild-type and homozygous animals. We present evidence that albumin-mediated retention of OTA in hepatocytes is required for formation of the toxic OP-OTA, while complete albumin elimination leads to rapid biliary clearance of OTA from hepatocytes with less formation of OP-OTA. In conclusion, albumin has a strong influence on metabolism and toxicity of OTA. In hypoalbuminemia, the parent OTA is associated with increased nephrotoxicity and the open lactone with increased hepatotoxicity.

2.
BMC Vet Res ; 20(1): 104, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491459

ABSTRACT

BACKGROUND: members of the genus Sarcocystis are intracellular obligate protozoan parasites classified within the phylum Apicomplexa and have an obligate heteroxenous life cycle involving two hosts. A more comprehensive understanding of the prevalence and geographic range of different Sarcocystis species in marine ecosystems is needed globally and nationally. Hence, the objective of this study was to document the incidence of Sarcocystis infection in sharks within the aquarium ecosystem of Egypt and to identify the species through the characterization of the SSU rDNA gene. METHODS: All organs of the mako shark specimen underwent macroscopic screening to detect the existence of a Sarcocystis cyst. Ten cysts were collected from the intestine and processed separately to extract the genomic DNA. The polymerase chain reaction (PCR) was accomplished by amplifying a specific 18S ribosomal RNA (rRNA) gene fragment. Subsequently, the resulting amplicons were subjected to purification and sequencing processes. RESULTS: Macroscopic examination of the mako shark intestinal wall sample revealed the presence of Sarcocystis cysts of various sizes and shapes, and sequencing of the amplicons from Sarcocystis DNA revealed a 100% nucleotide identity with the sequence of Sarcocystis tenella recorded from sheep in Iran; The mako shark sequence has been deposited in the GeneBank with the accession number OQ721979. This study presents the first scientific evidence demonstrating the presence of the Sarcocystis parasite in sharks, thereby documenting this specific marine species as a novel intermediate host in the Sarcocystis life cycle. CONCLUSIONS: This is the first identification of Sarcocystis infection in sharks, and we anticipate it will be an essential study for future screenings and establishing effective management measures for this disease in aquatic ecosystems.


Subject(s)
Sarcocystis , Sharks , Animals , Sheep/genetics , Sarcocystis/genetics , Ecosystem , Sharks/genetics , Phylogeny , Indian Ocean , DNA, Ribosomal , Life Cycle Stages
3.
Arch Toxicol ; 98(4): 1081-1093, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38436695

ABSTRACT

Large interspecies differences between rats and mice concerning the hepatotoxicity and carcinogenicity of aflatoxin B1 (AFB1) are known, with mice being more resistant. However, a comprehensive interspecies comparison including subcellular liver tissue compartments has not yet been performed. In this study, we performed spatio-temporal intravital analysis of AFB1 kinetics in the livers of anesthetized mice and rats. This was supported by time-dependent analysis of the parent compound as well as metabolites and adducts in blood, urine, and bile of both species by HPLC-MS/MS. The integrated data from intravital imaging and HPLC-MS/MS analysis revealed major interspecies differences between rats and mice: (1) AFB1-associated fluorescence persisted much longer in the nuclei of rat than mouse hepatocytes; (2) in the sinusoidal blood, AFB1-associated fluorescence was rapidly cleared in mice, while a time-dependent increase was observed in rats in the first three hours after injection followed by a plateau that lasted until the end of the observation period of six hours; (3) this coincided with a far stronger increase of AFB1-lysine adducts in the blood of rats compared to mice; (4) the AFB1-guanine adduct was detected at much higher concentrations in bile and urine of rats than mice. In both species, the AFB1-glutathione conjugate was efficiently excreted via bile, where it reached concentrations at least three orders of magnitude higher compared to blood. In conclusion, major differences between mice and rats were observed, concerning the nuclear persistence, formation of AFB1-lysine adducts, and the AFB1-guanine adducts.


Subject(s)
Aflatoxins , Rats , Mice , Animals , Aflatoxins/metabolism , Aflatoxins/toxicity , Lysine/metabolism , Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Liver/metabolism , Aflatoxin B1/toxicity , Guanine/metabolism , Intravital Microscopy
4.
Arch Toxicol ; 98(5): 1533-1542, 2024 May.
Article in English | MEDLINE | ID: mdl-38466352

ABSTRACT

Acetaminophen (APAP) is known to cause a breach of the blood-bile barrier in mice that, via a mechanism called futile bile acid (BA) cycling, increases BA concentrations in hepatocytes above cytotoxic thresholds. Here, we compared this mechanism in mice and rats, because both species differ massively in their susceptibility to APAP and compared the results to available human data. Dose and time-dependent APAP experiments were performed in male C57BL6/N mice and Wistar rats. The time course of BA concentrations in liver tissue and in blood was analyzed by MALDI-MSI and LC-MS/MS. APAP and its derivatives were measured in the blood by LC-MS. APAP-induced liver damage was analyzed by histopathology, immunohistochemistry, and by clinical chemistry. In mice, a transient increase of BA in blood and in peri-central hepatocytes preceded hepatocyte death. The BA increase coincided with oxidative stress in liver tissue and a compromised morphology of bile canaliculi and immunohistochemically visualized tight junction proteins. Rats showed a reduced metabolic activation of APAP compared to mice. However, even at very high doses that caused cell death of hepatocytes, no increase of BA concentrations was observed neither in liver tissue nor in the blood. Correspondingly, no oxidative stress was detectable, and the morphology of bile canaliculi and tight junction proteins remained unaltered. In conclusion, different mechanisms cause cell death in rats and mice, whereby oxidative stress and a breach of the blood-bile barrier are seen only in mice. Since transient cholestasis also occurs in human patients with APAP overdose, mice are a clinically relevant species to study APAP hepatotoxicity but not rats.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Mice , Rats , Humans , Male , Animals , Acetaminophen/toxicity , Acetaminophen/metabolism , Bile/metabolism , Chromatography, Liquid , Chemical and Drug Induced Liver Injury/pathology , Rats, Wistar , Tandem Mass Spectrometry , Liver/metabolism , Hepatocytes/metabolism , Mice, Inbred C57BL , Tight Junction Proteins/metabolism
5.
iScience ; 27(2): 108077, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38371522

ABSTRACT

This communication presents a mathematical mechanism-based model of the regenerating liver after drug-induced pericentral lobule damage resolving tissue microarchitecture. The consequence of alternative hypotheses about the interplay of different cell types on regeneration was simulated. Regeneration dynamics has been quantified by the size of the damage-induced dead cell area, the hepatocyte density and the spatial-temporal profile of the different cell types. We use deviations of observed trajectories from the simulated system to identify branching points, at which the systems behavior cannot be explained by the underlying set of hypotheses anymore. Our procedure reflects a successful strategy for generating a fully digital liver twin that, among others, permits to test perturbations from the molecular up to the tissue scale. The model simulations are complementing current knowledge on liver regeneration by identifying gaps in mechanistic relationships and guiding the system toward the most informative (lacking) parameters that can be experimentally addressed.

6.
Mol Syst Biol ; 20(3): 187-216, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38216754

ABSTRACT

Chronic liver diseases are worldwide on the rise. Due to the rapidly increasing incidence, in particular in Western countries, metabolic dysfunction-associated steatotic liver disease (MASLD) is gaining importance as the disease can develop into hepatocellular carcinoma. Lipid accumulation in hepatocytes has been identified as the characteristic structural change in MASLD development, but molecular mechanisms responsible for disease progression remained unresolved. Here, we uncover in primary hepatocytes from a preclinical model fed with a Western diet (WD) an increased basal MET phosphorylation and a strong downregulation of the PI3K-AKT pathway. Dynamic pathway modeling of hepatocyte growth factor (HGF) signal transduction combined with global proteomics identifies that an elevated basal MET phosphorylation rate is the main driver of altered signaling leading to increased proliferation of WD-hepatocytes. Model-adaptation to patient-derived hepatocytes reveal patient-specific variability in basal MET phosphorylation, which correlates with patient outcome after liver surgery. Thus, dysregulated basal MET phosphorylation could be an indicator for the health status of the liver and thereby inform on the risk of a patient to suffer from liver failure after surgery.


Subject(s)
Carcinoma, Hepatocellular , Fatty Liver , Liver Neoplasms , Humans , Phosphorylation , Phosphatidylinositol 3-Kinases/metabolism , Hepatocytes/metabolism , Hepatocyte Growth Factor/metabolism , Fatty Liver/metabolism , Liver Neoplasms/pathology
7.
J Hepatol ; 80(2): 268-281, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37939855

ABSTRACT

BACKGROUND & AIMS: Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies. METHODS: Cholestasis was induced by bile duct ligation (BDL) in mice. Bile flux in kidneys and livers was visualized by intravital imaging, supported by MALDI mass spectrometry imaging and liquid chromatography-tandem mass spectrometry. The effect of AS0369, a systemically bioavailable apical sodium-dependent bile acid transporter (ASBT) inhibitor, was evaluated by intravital imaging, RNA-sequencing, histological, blood, and urine analyses. Translational relevance was assessed in kidney biopsies from patients with CN, mice with a humanized bile acid (BA) spectrum, and via analysis of serum BAs and KIM-1 (kidney injury molecule 1) in patients with liver disease and hyperbilirubinemia. RESULTS: Proximal tubular epithelial cells (TECs) reabsorbed and enriched BAs, leading to oxidative stress and death of proximal TECs, casts in distal tubules and collecting ducts, peritubular capillary leakiness, and glomerular cysts. Renal ASBT inhibition by AS0369 blocked BA uptake into TECs and prevented kidney injury up to 6 weeks after BDL. Similar results were obtained in mice with humanized BA composition. In patients with advanced liver disease, serum BAs were the main determinant of KIM-1 levels. ASBT expression in TECs was preserved in biopsies from patients with CN, further highlighting the translational potential of targeting ASBT to treat CN. CONCLUSIONS: BA enrichment in proximal TECs followed by oxidative stress and cell death is a key early event in CN. Inhibiting renal ASBT and consequently BA enrichment in TECs prevents CN and systemically decreases BA concentrations. IMPACT AND IMPLICATIONS: Cholemic nephropathy (CN) is a severe complication of cholestasis and an unmet clinical need. We demonstrate that CN is triggered by the renal accumulation of bile acids (BAs) that are considerably increased in the systemic blood. Specifically, the proximal tubular epithelial cells of the kidney take up BAs via the apical sodium-dependent bile acid transporter (ASBT). We developed a therapeutic compound that blocks ASBT in the kidneys, prevents BA overload in tubular epithelial cells, and almost completely abolished all disease hallmarks in a CN mouse model. Renal ASBT inhibition represents a potential therapeutic strategy for patients with CN.


Subject(s)
Carrier Proteins , Cholestasis , Kidney Diseases , Liver Diseases , Membrane Glycoproteins , Organic Anion Transporters, Sodium-Dependent , Symporters , Humans , Mice , Animals , Cholestasis/complications , Cholestasis/metabolism , Kidney/metabolism , Symporters/metabolism , Bile Acids and Salts/metabolism , Liver/metabolism , Bile Ducts/metabolism , Liver Diseases/metabolism , Sodium
8.
Front Pharmacol ; 14: 1279357, 2023.
Article in English | MEDLINE | ID: mdl-38053838

ABSTRACT

Rationale: Liver cirrhosis is known to affect drug pharmacokinetics, but the functional assessment of the underlying pathophysiological alterations in drug metabolism is difficult. Methods: Cirrhosis in mice was induced by repeated treatment with carbon tetrachloride for 12 months. A cocktail of six drugs was administered, and parent compounds as well as phase I and II metabolites were quantified in blood, bile, and urine in a time-dependent manner. Pharmacokinetics were modeled in relation to the altered expression of metabolizing enzymes. In discrepancy with computational predictions, a strong increase of glucuronides in blood was observed in cirrhotic mice compared to vehicle controls. Results: The deviation between experimental findings and computational simulations observed by analyzing different hypotheses could be explained by increased sinusoidal export and corresponded to increased expression of export carriers (Abcc3 and Abcc4). Formation of phase I metabolites and clearance of the parent compounds were surprisingly robust in cirrhosis, although the phase I enzymes critical for the metabolism of the administered drugs in healthy mice, Cyp1a2 and Cyp2c29, were downregulated in cirrhotic livers. RNA-sequencing revealed the upregulation of numerous other phase I metabolizing enzymes which may compensate for the lost CYP isoenzymes. Comparison of genome-wide data of cirrhotic mouse and human liver tissue revealed similar features of expression changes, including increased sinusoidal export and reduced uptake carriers. Conclusion: Liver cirrhosis leads to increased blood concentrations of glucuronides because of increased export from hepatocytes into the sinusoidal blood. Although individual metabolic pathways are massively altered in cirrhosis, the overall clearance of the parent compounds was relatively robust due to compensatory mechanisms.

9.
Arch Toxicol ; 97(12): 3179-3196, 2023 12.
Article in English | MEDLINE | ID: mdl-37794256

ABSTRACT

Aflatoxin B1 (AFB1) is a highly hepatotoxic and carcinogenic mycotoxin produced by Aspergillus species. The compound is mainly metabolized in the liver and its metabolism varies between species. The present study quantified relevant AFB1- metabolites formed by mouse, rat, and human primary hepatocytes after treatment with 1 µM and 10 µM AFB1. The use of liquid chromatographic separation coupled with tandem mass spectrometric detection enabled the selective and sensitive determination of phase I and phase II metabolites of AFB1 over incubation times of up to 24 h. The binding of AFB1 to macromolecules was also considered. The fastest metabolism of AFB1 was observed in mouse hepatocytes which formed aflatoxin P1 as a major metabolite and also its glucuronidated form, while AFP1 occurred only in traces in the other species. Aflatoxin M1 was formed in all species and was, together with aflatoxin Q1 and aflatoxicol, the main metabolite in human cells. Effective epoxidation led to high amounts of DNA adducts already 30 min post-treatment, especially in rat hepatocytes. Lower levels of DNA adducts and fast DNA repair were found in mouse hepatocytes. Also, protein adducts arising from reactive intermediates were formed rapidly in all three species. Detoxification via glutathione conjugation and subsequent formation of the N-acetylcysteine derivative appeared to be similar in mice and in rats and strongly differed from human hepatocytes which did not form these metabolites at all. The use of qualitative reference material of a multitude of metabolites and the comparison of hepatocyte metabolism in three species using advanced methods enabled considerations on toxification and detoxification mechanisms of AFB1. In addition to glutathione conjugation, phase I metabolism is strongly involved in the detoxification of AFB1.


Subject(s)
Aflatoxin B1 , Aflatoxins , Humans , Rats , Mice , Animals , Aflatoxin B1/toxicity , Chromatography, High Pressure Liquid , DNA Adducts/metabolism , Tandem Mass Spectrometry , DNA , Aflatoxins/pharmacology , Aflatoxins/toxicity , Liver , Hepatocytes/metabolism , Glutathione/metabolism
10.
Cells ; 12(18)2023 09 21.
Article in English | MEDLINE | ID: mdl-37759553

ABSTRACT

Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) is the most common chronic liver disease in Western countries. It is becoming increasingly evident that peripheral organ-centered inflammatory diseases, including liver diseases, are linked with brain dysfunctions. Therefore, this study aims to unravel the effect of MASLD on brain histology, cognitive functions, and neurotransmitters. For this purpose, mice fed for 48 weeks on standard (SD) or Western diet (WD) were evaluated by behavioral tests, followed by sacrifice and analysis of the liver-brain axis including histopathology, immunohistochemistry, and biochemical analyses. Histological analysis of the liver showed features of Metabolic Dysfunction-Associated Steatohepatitis (MASH) in the WD-fed mice including lipid droplet accumulation, inflammation, and fibrosis. This was accompanied by an elevation of transaminase and alkaline phosphatase activities, increase in inflammatory cytokine and bile acid concentrations, as well as altered amino acid concentrations in the blood. Interestingly, compromised blood capillary morphology coupled with astrogliosis and microgliosis were observed in brain hippocampus of the WD mice, indicating neuroinflammation or a disrupted neurovascular unit. Moreover, attention was impaired in WD-fed mice along with the observations of impaired motor activity and balance, enhanced anxiety, and stereotyped head-twitch response (HTR) behaviors. Analysis of neurotransmitters and modulators including dopamine, serotonin, GABA, glutamate, and acetylcholine showed region-specific dysregulation in the brain of the WD-fed mice. In conclusion, the induction of MASH in mice is accompanied by the alteration of cellular morphology and neurotransmitter expression in the brain, associated with compromised cognitive functions.


Subject(s)
Diet, Western , Fatty Liver , Animals , Mice , Diet, Western/adverse effects , Cognition , Brain
11.
Arch Toxicol ; 97(11): 3005-3017, 2023 11.
Article in English | MEDLINE | ID: mdl-37615677

ABSTRACT

Exposure to multiple substances is a challenge for risk evaluation. Currently, there is an ongoing debate if generic "mixture assessment/allocation factors" (MAF) should be introduced to increase public health protection. Here, we explore concepts of mixture toxicity and the potential influence of mixture regulation concepts for human health protection. Based on this analysis, we provide recommendations for research and risk assessment. One of the concepts of mixture toxicity is additivity. Substances may act additively by affecting the same molecular mechanism within a common target cell, for example, dioxin-like substances. In a second concept, an "enhancer substance" may act by increasing the target site concentration and aggravating the adverse effect of a "driver substance". For both concepts, adequate risk management of individual substances can reliably prevent adverse effects to humans. Furthermore, we discuss the hypothesis that the large number of substances to which humans are exposed at very low and individually safe doses may interact to cause adverse effects. This commentary identifies knowledge gaps, such as the lack of a comprehensive overview of substances regulated under different silos, including food, environmentally and occupationally relevant substances, the absence of reliable human exposure data and the missing accessibility of ratios of current human exposure to threshold values, which are considered safe for individual substances. Moreover, a comprehensive overview of the molecular mechanisms and most susceptible target cells is required. We conclude that, currently, there is no scientific evidence supporting the need for a generic MAF. Rather, we recommend taking more specific measures, which focus on compounds with relatively small ratios between human exposure and doses, at which adverse effects can be expected.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Polychlorinated Dibenzodioxins , Humans , Food , Public Health , Risk Assessment
12.
Arch Toxicol ; 97(10): 2763-2770, 2023 10.
Article in English | MEDLINE | ID: mdl-37401952

ABSTRACT

Chloroquine (CQ) and hydroxychloroquine (HCQ) are classical antimalarial drugs, and recently have been used for other applications including coronavirus disease 2019 (COVID-19). Although they are considered safe, cardiomyopathy may associate CQ and HCQ applications particularly at overdoses. The goal of the present study was to evaluate the potential protective effect of the nootropic agent vinpocetine against CQ and HCQ adverse effects with a specific focus on the heart. For this purpose, a mouse model of CQ (0.5 up to 2.5 g/kg)/HCQ (1 up to 2 g/kg) toxicity was used, and the effect of vinpocetine was evaluated by survival, biochemical, as well as histopathological analyses. Survival analysis revealed that CQ and HCQ caused dose-dependent lethality, which was prevented by co-treatment with vinpocetine (100 mg/kg, oral or intraperitoneal). To gain deeper understanding, a dose of 1 g/kg CQ-which did not cause death within the first 24 h after administration-was applied with and without vinpocetine administration (100 mg/kg, intraperitoneal). The CQ vehicle group showed marked cardiotoxicity as evidenced by significant alterations of blood biomarkers including troponione-1, creatine phosphokinase (CPK), creatine kinase-myocardial band (CK-MB), ferritin, and potassium levels. This was confirmed at the tissue level by massive alteration of the heart tissue morphology and coincided with massive oxidative stress. Interestingly, co-administration of vinpocetine strongly ameliorated CQ-induced alterations and restored the antioxidant-defense system of the heart. These data suggest that vinpocetine could be used as an adjuvant therapy together with CQ/HCQ applications.


Subject(s)
COVID-19 , Chloroquine , Animals , Mice , Chloroquine/toxicity , Cardiotoxicity/prevention & control , SARS-CoV-2 , COVID-19 Drug Treatment , Hydroxychloroquine/toxicity , Hydroxychloroquine/therapeutic use , Oxidative Stress
13.
Immunity ; 56(7): 1578-1595.e8, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37329888

ABSTRACT

It is currently not well known how necroptosis and necroptosis responses manifest in vivo. Here, we uncovered a molecular switch facilitating reprogramming between two alternative modes of necroptosis signaling in hepatocytes, fundamentally affecting immune responses and hepatocarcinogenesis. Concomitant necrosome and NF-κB activation in hepatocytes, which physiologically express low concentrations of receptor-interacting kinase 3 (RIPK3), did not lead to immediate cell death but forced them into a prolonged "sublethal" state with leaky membranes, functioning as secretory cells that released specific chemokines including CCL20 and MCP-1. This triggered hepatic cell proliferation as well as activation of procarcinogenic monocyte-derived macrophage cell clusters, contributing to hepatocarcinogenesis. In contrast, necrosome activation in hepatocytes with inactive NF-κB-signaling caused an accelerated execution of necroptosis, limiting alarmin release, and thereby preventing inflammation and hepatocarcinogenesis. Consistently, intratumoral NF-κB-necroptosis signatures were associated with poor prognosis in human hepatocarcinogenesis. Therefore, pharmacological reprogramming between these distinct forms of necroptosis may represent a promising strategy against hepatocellular carcinoma.


Subject(s)
Liver Neoplasms , NF-kappa B , Humans , NF-kappa B/metabolism , Protein Kinases/metabolism , Necroptosis , Inflammation/pathology , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Apoptosis
14.
Front Bioeng Biotechnol ; 11: 1049564, 2023.
Article in English | MEDLINE | ID: mdl-36815881

ABSTRACT

In vitro to in vivo extrapolation represents a critical challenge in toxicology. In this paper we explore extrapolation strategies for acetaminophen (APAP) based on mechanistic models, comparing classical (CL) homogeneous compartment pharmacodynamic (PD) models and a spatial-temporal (ST), multiscale digital twin model resolving liver microarchitecture at cellular resolution. The models integrate consensus detoxification reactions in each individual hepatocyte. We study the consequences of the two model types on the extrapolation and show in which cases these models perform better than the classical extrapolation strategy that is based either on the maximal drug concentration (Cmax) or the area under the pharmacokinetic curve (AUC) of the drug blood concentration. We find that an CL-model based on a well-mixed blood compartment is sufficient to correctly predict the in vivo toxicity from in vitro data. However, the ST-model that integrates more experimental information requires a change of at least one parameter to obtain the same prediction, indicating that spatial compartmentalization may indeed be an important factor.

15.
EXCLI J ; 21: 1286-1298, 2022.
Article in English | MEDLINE | ID: mdl-36483914

ABSTRACT

Macroscopical and histological analysis of the skin is fundamental in both human and veterinary forensic investigations. However, databases of differential skin histology of various animal species are rare. The aim of the present study is to identify species-specific differential histological features of the skin that could be used in forensic investigations including animal identification. For this purpose, skin specimens were collected from the neck region of various farm animals including buffalo, cow, camel, sheep, goat, dog, and donkey, and were processed for histological analysis. Our comparative analysis revealed specific histological features in the skin that could differentiate between the studied animal species. The epidermis layer of the skin was very thick in buffalo, intermediate in cow, sheep, goat, dog, and donkey, but very thin in camel. The papillomatous epidermis was very frequent in buffalo, but very rare in cow. In the dermis layer of the skin, four structures were located which showed differential features between the studied animal species: the papillary layer, which was thick in buffalo, camel, sheep, dog, and donkey but thin in cow and goat. The sweat glands, which were few in buffalo, cow, goat, and dog, but numerous and deeply located in the dermis of sheep; they were individually located in all studied animals except in camel and donkey they were arranged in clusters. The hair follicles were characteristic for the skin of sheep as they were present at two different levels in the dermis with simple and compound hair follicles. The sebaceous glands were large and multi-lobular in buffalo, but small and uni-lobular in cow and camel. The hypodermis layer of the skin was very thick in sheep and goat in contrast to all other analyzed animals. In conclusion, the present study provides comprehensive information on the differential histological features of the skin of seven different domestic animal species that could be used as a key in forensic investigations.

16.
Arch Toxicol ; 96(12): 3349-3361, 2022 12.
Article in English | MEDLINE | ID: mdl-36227364

ABSTRACT

The mycotoxin ochratoxin A (OTA) is a contaminant in food that causes nephrotoxicity and to a minor degree hepatotoxicity. Recently, we observed that OTA induces liver damage preferentially to the cytochrome P450 (CYP)-expressing pericentral lobular zone, similar to hepatotoxic substances known to be metabolically toxified by CYP, such as acetaminophen or carbon tetrachloride. To investigate whether CYP influences OTA toxicity, we used a single dose of OTA (7.5 mg/kg; intravenous) with and without pre-treatment with the pan CYP-inhibitor 1-aminobenzotriazole (ABT) 2 h before OTA administration. Blood, urine, as well as liver and kidney tissue samples were collected 24 h after OTA administration for biochemical and histopathological analyses. Inhibition of CYPs by ABT strongly increased the nephro- and hepatotoxicity of OTA. The urinary kidney damage biomarkers kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) were increased > 126-fold and > 20-fold, respectively, in mice treated with ABT and OTA compared to those receiving OTA alone. The blood biomarkers of liver damage, alanine transaminase (ALT) and aspartate transaminase (AST) both increased > 21- and 30-fold, respectively, when OTA was administered to ABT pre-treated mice compared to the effect of OTA alone. Histological analysis of the liver revealed a pericentral lobular damage induced by OTA despite CYP-inhibition by ABT. Administration of ABT alone caused no hepato- or nephrotoxicity. Overall, the results presented are compatible with a scenario where CYPs mediate the detoxification of OTA, yet the mechanisms responsible for the pericental liver damage pattern still remain to be elucidated.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver Diseases , Mycotoxins , Animals , Mice , Lipocalin-2 , Carbon Tetrachloride , Acetaminophen/toxicity , Alanine Transaminase , Cytochrome P-450 Enzyme System/metabolism , Chemical and Drug Induced Liver Injury/etiology , Biomarkers , Aspartate Aminotransferases
17.
Elife ; 112022 10 18.
Article in English | MEDLINE | ID: mdl-36255405

ABSTRACT

The Hippo signaling pathway controls cell proliferation and tissue regeneration via its transcriptional effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). The canonical pathway topology is characterized by sequential phosphorylation of kinases in the cytoplasm that defines the subcellular localization of YAP and TAZ. However, the molecular mechanisms controlling the nuclear/cytoplasmic shuttling dynamics of both factors under physiological and tissue-damaging conditions are poorly understood. By implementing experimental in vitro data, partial differential equation modeling, as well as automated image analysis, we demonstrate that nuclear phosphorylation contributes to differences between YAP and TAZ localization in the nucleus and cytoplasm. Treatment of hepatocyte-derived cells with hepatotoxic acetaminophen (APAP) induces a biphasic protein phosphorylation eventually leading to nuclear protein enrichment of YAP but not TAZ. APAP-dependent regulation of nuclear/cytoplasmic YAP shuttling is not an unspecific cellular response but relies on the sequential induction of reactive oxygen species (ROS), RAC-alpha serine/threonine-protein kinase (AKT, synonym: protein kinase B), as well as elevated nuclear interaction between YAP and AKT. Mouse experiments confirm this sequence of events illustrated by the expression of ROS-, AKT-, and YAP-specific gene signatures upon APAP administration. In summary, our data illustrate the importance of nuclear processes in the regulation of Hippo pathway activity. YAP and TAZ exhibit different shuttling dynamics, which explains distinct cellular responses of both factors under physiological and tissue-damaging conditions.


Subject(s)
Chemical and Drug Induced Liver Injury , Proto-Oncogene Proteins c-akt , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphorylation , Adaptor Proteins, Signal Transducing/metabolism , Phosphoproteins/metabolism , Acetaminophen/toxicity , Reactive Oxygen Species/metabolism , Protein Serine-Threonine Kinases , YAP-Signaling Proteins , Nuclear Proteins/metabolism , Threonine/metabolism , Serine/metabolism
18.
Int J Mol Sci ; 23(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36293210

ABSTRACT

Women are more prone to develop either hypothyroidism or cholesterol gallstones than men. However, a male predominance in cholesterol gallstones under hypothyroidism was reported. Recently, a novel pathogenic link between thyroid hormone (TH) deficiency and cholesterol gallstones has been described in male mice. Here, we investigate if TH deficiency impacts cholesterol gallstone formation in females by the same mechanism. Three-month-old C57BL/6J mice were randomly divided into a control, a TH deficient, a lithogenic, and a lithogenic + TH deficient group and diet-treated for two, four, and six weeks. Gallstone prevalence, liver function tests, bile composition, hepatic gene expression, and gallbladder aquaporin expression and localization were investigated. Cholesterol gallstones were observed in lithogenic + TH deficient but not lithogenic only female mice. Diminished hydrophilicity of primary bile acids due to decreased gene expression of hepatic detoxification phase II enzymes was observed. A sex-specific expression and localization of hepatobiliary aquaporins involved in transcellular water and glycerol permeability was observed under TH deficient and lithogenic conditions. TH deficiency promotes cholesterol gallstone formation in female C57BL/6J mice by the same mechanism as observed in males. However, cholesterol gallstone prevalence was lower in female than male C57BL/6J mice. Interestingly, the sex-specific expression and localization of hepatobiliary aquaporins could protect female C57BL/6J mice to cholestasis and could reduce biliary water transport in male C57BL/6J mice possibly contributing to the sex-dependent cholesterol gallstone prevalence under TH deficiency.


Subject(s)
Aquaporins , Cholestasis , Gallstones , Hypothyroidism , Female , Male , Mice , Animals , Bile Acids and Salts/metabolism , Mice, Inbred C57BL , Gallstones/genetics , Gallstones/metabolism , Gallstones/pathology , Glycerol/metabolism , Cholesterol/metabolism , Liver/metabolism , Aquaporins/genetics , Aquaporins/metabolism , Cholestasis/metabolism , Cholic Acid/metabolism , Hypothyroidism/metabolism , Hydrophobic and Hydrophilic Interactions , Thyroid Hormones/metabolism , Water/metabolism
19.
Arch Toxicol ; 96(11): 3067-3076, 2022 11.
Article in English | MEDLINE | ID: mdl-36102954

ABSTRACT

Colchicine is an anti-inflammatory drug with a narrow therapeutic index. Its binding to tubulin prevents microtubule polymerization; however, little is known about how depolymerization of microtubules interferes with the phagocytosis function of Kupffer cells (KC). Here, we applied functional intravital imaging techniques to investigate the influence of microtubule disruption by colchicine on KC morphology, as well as its capacity to clear foreign particles and bacterial lipopolysaccharide (LPS) in anesthetized mice. Intravital imaging of KC in healthy mice showed the typical elongated morphology, localization at the luminal side of the sinusoidal endothelial cells, and moving cell protrusions. In contrast, at colchicine doses of 1 mg/kg and higher (intraperitoneal), KC appeared roundish with strongly reduced protrusions and motility. To study the functional consequences of these alterations, we analyzed the capacity of KC to phagocytose fluorescent nanospheres (100 nm-size) and LPS. After tail vein injection, the nanospheres formed aggregates of up to ~ 5 µm moving along the sinusoidal bloodstream. In controls, the nanosphere aggregates were rapidly captured by the Kupffer cell protrusions, followed by an internalization process that lasted up to 10 min. Similar capture events and internalization processes were observed after the administration of fluorescently labeled LPS. In contrast, capture and internalization of both nanospheres and LPS by KC were strongly reduced in colchicine-treated mice. Reduced phagocytosis of LPS was accompanied by aggravated production of inflammatory cytokines. Since 0.4 mg/kg colchicine in mice has been reported to be bio-equivalent to human therapeutic doses, the here-observed adverse effects on KC occurred at doses only slightly above those used clinically, and may be critical for patients with endotoxemia due to a leaky gut-blood barrier.


Subject(s)
Kupffer Cells , Lipopolysaccharides , Animals , Anti-Inflammatory Agents/pharmacology , Colchicine/metabolism , Colchicine/toxicity , Cytokines/metabolism , Endothelial Cells/metabolism , Endotoxins , Humans , Lipopolysaccharides/toxicity , Mice , Tubulin/metabolism
20.
Toxicol Lett ; 368: 33-46, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35963427

ABSTRACT

The accumulation of lipid droplets in hepatocytes is a key feature of drug-induced liver injury (DILI) and can be induced by a subset of hepatotoxic compounds. In the present study, we optimized and evaluated an in vitro technique based on the fluorescent dye Nile Red, further named Nile Red assay to quantify lipid droplets induced by the exposure to chemicals. The Nile Red assay and a cytotoxicity test (CTB assay) were then performed on cells exposed concentration-dependently to 60 different compounds. Of these, 31 were known to induce hepatotoxicity in humans, and 13 were reported to also cause steatosis. In order to compare in vivo relevant blood concentrations, pharmacokinetic models were established for all compounds to simulate the maximal blood concentrations (Cmax) at therapeutic doses. The results showed that several hepatotoxic compounds induced an increase in lipid droplets at sub-cytotoxic concentrations. To compare how well (1) the cytotoxicity test alone, (2) the Nile Red assay alone, and (3) the combination of the cytotoxicity test and the Nile Red assay (based on the lower EC10 of both assays) allow the differentiation between hepatotoxic and non-hepatotoxic compounds, a previously established performance metric, the Toxicity Separation Index (TSI) was calculated. In addition, the Toxicity Estimation Index (TEI) was calculated to determine how well blood concentrations that cause an increased DILI risk can be estimated for hepatotoxic compounds. Our findings indicate that the combination of both assays improved the TSI and TEI compared to each assay alone. In conclusion, the study demonstrates that inclusion of the Nile Red assay into in vitro test batteries may improve the prediction of DILI compounds.


Subject(s)
Chemical and Drug Induced Liver Injury , Drug-Related Side Effects and Adverse Reactions , Fatty Liver , Chemical and Drug Induced Liver Injury/etiology , Fatty Liver/chemically induced , Hepatocytes , Humans , Oxazines/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...