Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Mater ; : e2406610, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39003612

ABSTRACT

In this study, an innovative and cost-effective ionic polymer for CO2 capture and utilization for the first time, using abundant and nonfood-based biomass lignin is reported. The modified ionic polymer synthesizes through the reaction of glycidyltrimethylammonium chloride with lignin under alkaline conditions to yield quaternary ammonium ionic functionality. Subsequently, the hydroxide-based pure ionic lignin polymer is employed for CO2 capture from both direct air and concentrated CO2 sources at room temperature and atmospheric pressure. Structural characterization of the polymers is accomplished through 1H, 13C, and 2D-heteronuclear single quantum coherence (HSQC) NMR, and FT-IR spectroscopy. The CO2 capture process is established through the formation of bicarbonate ions alongside the presence of CO2. The captured CO2 is precisely quantified by using inverse-gated proton decoupled 13C NMR with an internal standard (trioxane). Remarkably, the captured-CO2 amounts of ionic lignin polymer are 1.06 mmol g-1 (47 mg g-1) from concentrated-CO2 source and 0.60 mmol g-1 (26 mg g-1) from direct-air. The captured-CO2 in ionic lignin polymer is released in controlled manner and utilized in the synthesis of cyclic carbonate, showcasing the productive application of the captured carbon. Moreover, the fully controlled recovering of ionic lignin polymer achieves via repeated CO2 release ↔ CO2 capture.

2.
Chemistry ; 30(49): e202402165, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38925585

ABSTRACT

Post Synthetic Modification (PSM) of Metal-Organic Frameworks (MOFs) is a crucial strategy for developing new MOFs with enhanced functional properties compared to their parent one. PSM can be accomplished through various methods:1) modification of organic linkers; 2) exchange of metal ions or nodes; and 3) inclusion or exchange of solvent/guest molecules. Herein, PSM of bimetallic and monometallic MOFs containing biphenyl dinitro-tetra-carboxylates (NCA) are demonstrated. The tetra carboxylate NCA, produces monometallic Cd-MOF-1 and Cu-MOF-1 and bimetallic CoZn-MOF in solvothermal reactions with the corresponding metal salts. The CoZn-MOF undergoes post-synthetic transmetallation with Cd(NO3)2 and Cu(NO3)2 in aqueous solution to yield Cd-MOF-2 and Cu-MOF-2, respectively. Additionally, green crystals of Cu-MOF-1 found to undergo a single-crystal-to-single-crystal (SCSC) transformation to blue crystals of Cu-MOF-3 upon dipped into water at room temperature. These MOFs demonstrate notable proton conductivities ranging from 10-3 to 10-4 S cm-1 under variable temperatures and humidity levels. Among them, Cu-MOF-3 achieves the highest proton conductivity of 1.36×10-3 S cm-1 at 90 °C and 98 % relative humidity, attributed to its continuous and extensive hydrogen bonding network, which provides effective proton conduction pathways within the MOF. This work highlights a convenient strategy for designing proton-conducting MOFs via post-synthetic modification.

3.
Chem Asian J ; 16(12): 1562-1569, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-33885226

ABSTRACT

Developing a robust metal-organic framework (MOF) which facilitates proton hopping along the pore channels is very demanding in the context of fabricating an efficient proton-conducting membrane for fuel cells. Herein, we report the synthesis of a novel tetradentate aromatic phosphonate ligand H8 L (L=tetraphenylethylene tetraphosphonic acid) based Ni-MOF, whose crystal structure has been solved from single-crystal X-ray diffraction. Ni-MOF [Ni2 (H4 L)(H2 O)9 (C2 H7 SO)(C2 H7 NCO)] displays a monoclinic crystal structure with a space group of P 21 /c, a=11.887 Å, b=34.148 Å, c=11.131 Å, α=γ=90°, ß=103.374°, where a nickel-hexahydrate moiety located inside the void space of the framework through several H-bonding interactions. Upon treatment of the Ni-MOF in different pH media as well as solvents, the framework remained unaltered, suggesting the presence of strong H-bonding interactions in the framework. High framework stability of Ni-MOF bearing H-bonding interactions motivated us to explore this metal-organic framework material as proton-conducting medium after external proton doping. Due to the presence of a large number of H-bonding interactions and the presence of water molecules in the framework we have carried out the doping of organic p-toluenesulfonic acid (PTSA) and inorganic sulphuric acid (SA) in this Ni-MOF and observed high proton conductivity of 5.28×10-2  S cm-1 at 90 °C and 98% relative humidity for the SA-doped material. Enhancement of proton conductivity by proton doping under humid conditions suggested a very promising feature of this Ni-MOF.

SELECTION OF CITATIONS
SEARCH DETAIL