Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(16)2023 Aug 13.
Article in English | MEDLINE | ID: mdl-37630292

ABSTRACT

In the field of nuclear medicine, the ß+ -emitting 43Sc and ß- -emitting 47Sc are promising candidates in cancer diagnosis and targeted radionuclide therapy (TRT) due to their favorable decay schema and shared pharmacokinetics as a true theranostic pair. Additionally, scandium is a group-3 transition metal (like 177Lu) and exhibits affinity for DOTA-based chelators, which have been studied in depth, making the barrier to implementation lower for 43/47Sc than for other proposed true theranostics. Before 43/47Sc can see widespread pre-clinical evaluation, however, an accessible production methodology must be established and each isotope's radiolabeling and animal imaging capabilities studied with a widely utilized tracer. As such, a simple means of converting an 18 MeV biomedical cyclotron to support solid targets and produce 43Sc via the 42Ca(d,n)43Sc reaction has been devised, exhibiting reasonable yields. The NatTi(γ,p)47Sc reaction is also investigated along with the successful implementation of chemical separation and purification methods for 43/47Sc. The conjugation of 43/47Sc with PSMA-617 at specific activities of up to 8.94 MBq/nmol and the subsequent imaging of LNCaP-ENZaR tumor xenografts in mouse models with both 43/47Sc-PSMA-617 are also presented.


Subject(s)
Nuclear Medicine , Prostatic Neoplasms , Humans , Animals , Mice , Male , Scandium , Precision Medicine , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radioisotopes/therapeutic use
2.
Biosensors (Basel) ; 12(8)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36005043

ABSTRACT

Field-effect transistors (FETs) have become eminent electronic devices for biosensing applications owing to their high sensitivity, faster response and availability of advanced fabrication techniques for their production. The device physics of this sensor is now well understood due to the emergence of several numerical modelling and simulation papers over the years. The pace of advancement along with the knowhow of theoretical concepts proved to be highly effective in detecting deadly pathogens, especially the SARS-CoV-2 spike protein of the coronavirus with the onset of the (coronavirus disease of 2019) COVID-19 pandemic. However, the advancement in the sensing system is also accompanied by various hurdles that degrade the performance. In this review, we have explored all these challenges and how these are tackled with innovative approaches, techniques and device modifications that have also raised the detection sensitivity and specificity. The functional materials of the device are also structurally modified towards improving the surface area and minimizing power dissipation for developing miniaturized microarrays applicable in ultra large scale integration (ULSI) technology. Several theoretical models and simulations have also been carried out in this domain which have given a deeper insight on the electron transport mechanism in these devices and provided the direction for optimizing performance.


Subject(s)
Biosensing Techniques , COVID-19 , Biosensing Techniques/methods , COVID-19/diagnosis , Humans , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Transistors, Electronic
3.
R Soc Open Sci ; 5(3): 171614, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29657768

ABSTRACT

This study addresses the cellular uptake of nanomaterials in the field of bio-applications. In the present study, we have synthesized water-soluble lead sulfide quantum dot (PbS QD) with glutathione and 3-MPA (mercaptopropionic acid) as the stabilizing ligand using a green approach. 3-MPA-capped QDs were further modified with streptavidin and then bound to biotin because of its high conjugation efficiency. Labelling and bio-imaging of cells with these bio-conjugated QDs were evaluated. The bright red fluorescence from these types of QDs in HeLa cells makes these materials suitable for deep tissue imaging.

SELECTION OF CITATIONS
SEARCH DETAIL