Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
MicroPubl Biol ; 20242024.
Article in English | MEDLINE | ID: mdl-38660564

ABSTRACT

The quest for extending lifespan and promoting a healthy aging has been a longstanding pursuit in the field of aging research. The control of aging and age-related diseases by nitric oxide (NO) and cGMP signaling is a broadly conserved process from worms to human. Here we show that TOP-N53, a dual-acting NO donor and PDE5 inhibitor, can increase both lifespan and health span in C. elegans .

2.
Nat Commun ; 14(1): 3052, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37236963

ABSTRACT

Maintaining or shifting between behavioral states according to context is essential for animals to implement fitness-promoting strategies. How the integration of internal state, past experience and sensory inputs orchestrates persistent multidimensional behavioral changes remains poorly understood. Here, we show that C. elegans integrates environmental temperature and food availability over different timescales to engage in persistent dwelling, scanning, global or glocal search strategies matching thermoregulatory and feeding needs. Transition between states, in each case, involves regulating multiple processes including AFD or FLP tonic sensory neurons activity, neuropeptide expression and downstream circuit responsiveness. State-specific FLP-6 or FLP-5 neuropeptide signaling acts on a distributed set of inhibitory GPCR(s) to promote scanning or glocal search, respectively, bypassing dopamine and glutamate-dependent behavioral state control. Integration of multimodal context via multisite regulation in sensory circuits might represent a conserved regulatory logic for a flexible prioritization on the valence of multiple inputs when operating persistent behavioral state transitions.


Subject(s)
Caenorhabditis elegans Proteins , Neuropeptides , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Sensory Receptor Cells/metabolism , Neuropeptides/metabolism , Signal Transduction
3.
Elife ; 122023 05 11.
Article in English | MEDLINE | ID: mdl-37166173

ABSTRACT

Nociceptive habituation is a conserved process through which pain sensitivity threshold is adjusted based on past sensory experience and which may be dysregulated in human chronic pain conditions. Noxious heat habituation in Caenorhabditis elegans involves the nuclear translocation of CaM kinase-1 (CMK-1) in the FLP thermo-nociceptors neurons, causing reduced animal heat sensitivity and avoidance responses. The phosphorylation of CMK-1 on T179 by CaM kinase kinase-1 (CKK-1) is required for nuclear entry. Recently, we identified a specific nuclear export sequence (NES) required to maintain CMK-1 in the cytoplasm at rest (20°C) and showed that Ca2+/CaM binding is sufficient to enhance CMK-1 affinity for IMA-3 via a specific nuclear localization signal (NLS) in order to promote nuclear entry after persistent heat stimulation (90 min at 28°C) (Ippolito et al., 2021). Here, we identified additional functional NES and NLS on CMK-1, whose activity can counteract previously identified elements. Furthermore, we clarify the relationship between the CaM-binding-dependent and T179-dependent effects. T179 phosphorylation can promote nuclear entry both downstream of CaM binding and as part of an independent/parallel pathway. Moreover, T179 phosphorylation can also produce the opposite effect by promoting nuclear export. Taken together, our studies suggest that multiple calcium-dependent regulatory mechanisms converge to bias the activity pattern across a network of NES/NLS elements, in order to control CMK-1 nucleo-cytoplasmic shuttling, and actuate stimulation-dependent nociceptive plasticity.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Calcium , Animals , Active Transport, Cell Nucleus , Caenorhabditis elegans/metabolism , Calcium/metabolism , Cell Nucleus/metabolism , Nociceptors/metabolism , Nuclear Localization Signals/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Caenorhabditis elegans Proteins/metabolism
4.
Genetics ; 224(1)2023 05 04.
Article in English | MEDLINE | ID: mdl-36947448

ABSTRACT

The detection and avoidance of harmful stimuli are essential animal capabilities. The molecular and cellular mechanisms controlling nociception and its plasticity are conserved, genetically controlled processes of broad biomedical interest given their relevance to understand and treat pain conditions that represent a major health burden. Recent genome-wide association studies (GWAS) have identified a rich set of polymorphisms related to different pain conditions and pointed to many human pain gene candidates, whose connection to the pain pathways is however often poorly understood. Here, we used a computer-assisted Caenorhabditis elegans thermal avoidance analysis pipeline to screen for behavioral defects in a set of 109 mutants for genes orthologous to human pain-related genes. We measured heat-evoked reversal thermosensitivity profiles, as well as spontaneous reversal rate, and compared naïve animals with adapted animals submitted to a series of repeated noxious heat stimuli, which in wild type causes a progressive habituation. Mutations affecting 28 genes displayed defects in at least one of the considered parameters and could be clustered based on specific phenotypic footprints, such as high-sensitivity mutants, nonadapting mutants, or mutants combining multiple defects. Collectively, our data reveal the functional architecture of a network of conserved pain-related genes in C. elegans and offer novel entry points for the characterization of poorly understood human pain genes in this genetic model.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Humans , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Nociception/physiology , Genome-Wide Association Study , Pain
5.
Curr Opin Neurobiol ; 73: 102525, 2022 04.
Article in English | MEDLINE | ID: mdl-35307612

ABSTRACT

As small ectotherms, whose temperature equilibrates almost instantly with that of their environment, free-living nematodes rely on their behavior for thermoregulation. Caenorhabditis elegans has been extensively used as a model to address the fundamental mechanisms involved in thermosensation and the production of temperature-dependent behaviors. Behavioral responses include avoidance of acute noxious heat or cold stimuli and thermotactic responses to innocuous temperatures to produce oriented navigation in spatial thermogradients. In order to produce these behaviors, C. elegans relies on its ability to detect thermal cues with exquisite sensitivity, orchestrate a set of specific behavioral responses and adapt these responses in specific contexts, including according to past sensory experience and current internal states. The present review focuses on recent advances in our understanding of the processes occurring at the molecular, cellular, and circuit levels that enable thermosensory information processing and plasticity.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Adaptation, Physiological , Animals , Behavior, Animal/physiology , Caenorhabditis elegans/physiology , Temperature , Thermosensing/physiology
6.
Sci Rep ; 11(1): 21766, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34741086

ABSTRACT

Light affects many physiological processes in mammals such as entrainment of the circadian clock, regulation of mood, and relaxation of blood vessels. At the molecular level, a stimulus such as light initiates a cascade of kinases that phosphorylate CREB at various sites, including serine 133 (S133). This modification leads CREB to recruit the co-factor CRCT1 and the histone acetyltransferase CBP to stimulate the transcription of genes containing a CRE element in their promoters, such as Period 1 (Per1). However, the details of this pathway are poorly understood. Here we provide evidence that PER2 acts as a co-factor of CREB to facilitate the formation of a transactivation complex on the CRE element of the Per1 gene regulatory region in response to light or forskolin. Using in vitro and in vivo approaches, we show that PER2 modulates the interaction between CREB and its co-regulator CRTC1 to support complex formation only after a light or forskolin stimulus. Furthermore, the absence of PER2 abolished the interaction between the histone acetyltransferase CBP and CREB. This process was accompanied by a reduction of histone H3 acetylation and decreased recruitment of RNA Pol II to the Per1 gene. Collectively, our data show that PER2 supports the stimulus-dependent induction of the Per1 gene via modulation of the CREB/CRTC1/CBP complex.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , Gene Expression Regulation/radiation effects , Period Circadian Proteins/metabolism , Acetylation , Animals , Chromatin/metabolism , Male , Mice , Proto-Oncogene Proteins c-fos/metabolism
7.
PLoS Genet ; 17(11): e1009880, 2021 11.
Article in English | MEDLINE | ID: mdl-34748554

ABSTRACT

In order to thrive in constantly changing environments, animals must adaptively respond to threatening events. Noxious stimuli are not only processed according to their absolute intensity, but also to their context. Adaptation processes can cause animals to habituate at different rates and degrees in response to permanent or repeated stimuli. Here, we used a forward genetic approach in Caenorhabditis elegans to identify a neuropeptidergic pathway, essential to prevent fast habituation and maintain robust withdrawal responses to repeated noxious stimuli. This pathway involves the FRPR-19A and FRPR-19B G-protein coupled receptor isoforms produced from the frpr-19 gene by alternative splicing. Loss or overexpression of each or both isoforms can impair withdrawal responses caused by the optogenetic activation of the polymodal FLP nociceptor neuron. Furthermore, we identified FLP-8 and FLP-14 as FRPR-19 ligands in vitro. flp-14, but not flp-8, was essential to promote withdrawal response and is part of the same genetic pathway as frpr-19 in vivo. Expression and cell-specific rescue analyses suggest that FRPR-19 acts both in the FLP nociceptive neurons and downstream interneurons, whereas FLP-14 acts from interneurons. Importantly, genetic impairment of the FLP-14/FRPR-19 pathway accelerated the habituation to repeated FLP-specific optogenetic activation, as well as to repeated noxious heat and harsh touch stimuli. Collectively, our data suggest that well-adjusted neuromodulation via the FLP-14/FRPR-19 pathway contributes to promote nociceptive signals in C. elegans and counteracts habituation processes that otherwise tend to rapidly reduce aversive responses to repeated noxious stimuli.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/physiology , Neuropeptides/metabolism , Nociception , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Escape Reaction , Genes, Helminth , Hot Temperature , Neurons/metabolism , Neuropeptides/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism
8.
Elife ; 102021 11 12.
Article in English | MEDLINE | ID: mdl-34766550

ABSTRACT

Sensory and behavioral plasticity are essential for animals to thrive in changing environments. As key effectors of intracellular calcium signaling, Ca2+/calmodulin-dependent protein kinases (CaMKs) can bridge neural activation with the many regulatory processes needed to orchestrate sensory adaptation, including by relaying signals to the nucleus. Here, we elucidate the molecular mechanism controlling the cell activation-dependent nuclear translocation of CMK-1, the Caenorhabditis elegans ortholog of mammalian CaMKI/IV, in thermosensory neurons in vivo. We show that an intracellular Ca2+ concentration elevation is necessary and sufficient to favor CMK-1 nuclear import. The binding of Ca2+/CaM to CMK-1 increases its affinity for IMA-3 importin, causing a redistribution with a relatively slow kinetics, matching the timescale of sensory adaptation. Furthermore, we show that this mechanism enables the encoding of opposite nuclear signals in neuron types with opposite calcium-responses and that it is essential for experience-dependent behavioral plasticity and gene transcription control in vivo. Since CaMKI/IV are conserved regulators of adaptable behaviors, similar mechanisms could exist in other organisms and for other sensory modalities.


Subject(s)
Caenorhabditis elegans/physiology , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Sensory Receptor Cells/metabolism , Adaptation, Physiological , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Calcium Signaling , Cell Nucleus/metabolism , Karyopherins/metabolism , Thermosensing
9.
J Biol Methods ; 8(3): e152, 2021.
Article in English | MEDLINE | ID: mdl-34514013

ABSTRACT

DNA adenine methylation identification (DamID) is a powerful method to determine DNA binding profiles of proteins at a genomic scale. The method leverages the fusion between a protein of interest and the Dam methyltransferase of E. coli, which methylates proximal DNA in vivo. Here, we present an optimized procedure, which was developed for tissue-specific analyses in Caenorhabditis elegans and successfully used to footprint genes actively transcribed by RNA polymerases and to map transcription factor binding in gene regulatory regions. The present protocol details C. elegans-specific steps involved in the preparation of transgenic lines and genomic DNA samples, as well as broadly applicable steps for the DamID procedure, including the isolation of methylated DNA fragments, the preparation of multiplexed libraries, Nanopore sequencing, and data analysis. Two distinctive features of the approach are (i) the use of an efficient recombination-based strategy to selectively analyze rare cell types and (ii) the use of Nanopore sequencing, which streamlines the process. The method allows researchers to go from genomic DNA samples to sequencing results in less than a week, while being sensitive enough to report reliable DNA footprints in cell types as rare as 2 cells per animal.

10.
PLoS Genet ; 16(10): e1009102, 2020 10.
Article in English | MEDLINE | ID: mdl-33104696

ABSTRACT

Ryanodine receptors (RyR) are essential regulators of cellular calcium homeostasis and signaling. Vertebrate genomes contain multiple RyR gene isoforms, expressed in different tissues and executing different functions. In contrast, invertebrate genomes contain a single RyR-encoding gene and it has long been proposed that different transcripts generated by alternative splicing may diversify their functions. Here, we analyze the expression and function of alternative exons in the C. elegans RyR gene unc-68. We show that specific isoform subsets are created via alternative promoters and via alternative splicing in unc-68 Divergent Region 2 (DR2), which actually corresponds to a region of high sequence variability across vertebrate isoforms. The expression of specific unc-68 alternative exons is enriched in different tissues, such as in body wall muscle, neurons and pharyngeal muscle. In order to infer the function of specific alternative promoters and alternative exons of unc-68, we selectively deleted them by CRISPR/Cas9 genome editing. We evaluated pharyngeal function, as well as locomotor function in swimming and crawling with high-content computer-assisted postural and behavioral analysis. Our data provide a comprehensive map of the pleiotropic impact of isoform-specific mutations and highlight that tissue-specific unc-68 isoforms fulfill distinct functions. As a whole, our work clarifies how the C. elegans single RyR gene unc-68 can fulfill multiple tasks through tissue-specific isoforms, and provide a solid foundation to further develop C. elegans as a model to study RyR channel functions and malfunctions.


Subject(s)
Alternative Splicing/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Muscle Contraction/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Animals , Animals, Genetically Modified/growth & development , Caenorhabditis elegans/growth & development , Calcium Signaling/genetics , Disease Models, Animal , Exons , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Mutation/genetics , Organ Specificity/genetics , Protein Isoforms/genetics , Ryanodine/metabolism
11.
Genetics ; 216(4): 931-945, 2020 12.
Article in English | MEDLINE | ID: mdl-33037050

ABSTRACT

Differential gene expression across cell types underlies development and cell physiology in multicellular organisms. Caenorhabditis elegans is a powerful, extensively used model to address these biological questions. A remaining bottleneck relates to the difficulty to obtain comprehensive tissue-specific gene transcription data, since available methods are still challenging to execute and/or require large worm populations. Here, we introduce the RNA Polymerase DamID (RAPID) approach, in which the Dam methyltransferase is fused to a ubiquitous RNA polymerase subunit to create transcriptional footprints via methyl marks on the DNA of transcribed genes. To validate the method, we determined the polymerase footprints in whole animals, in sorted embryonic blastomeres and in different tissues from intact young adults by driving tissue-specific Dam fusion expression. We obtained meaningful transcriptional footprints in line with RNA-sequencing (RNA-seq) studies in whole animals or specific tissues. To challenge the sensitivity of RAPID and demonstrate its utility to determine novel tissue-specific transcriptional profiles, we determined the transcriptional footprints of the pair of XXX neuroendocrine cells, representing 0.2% of the somatic cell content of the animals. We identified 3901 candidate genes with putatively active transcription in XXX cells, including the few previously known markers for these cells. Using transcriptional reporters for a subset of new hits, we confirmed that the majority of them were expressed in XXX cells and identified novel XXX-specific markers. Taken together, our work establishes RAPID as a valid method for the determination of RNA polymerase footprints in specific tissues of C. elegans without the need for cell sorting or RNA tagging.


Subject(s)
Caenorhabditis elegans Proteins/genetics , DNA-Directed RNA Polymerases/metabolism , Gene Expression Profiling/methods , Protein Footprinting/methods , RNA-Seq/methods , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism , Animals , Blastomeres/metabolism , Caenorhabditis elegans , Caenorhabditis elegans Proteins/metabolism , DNA-Directed RNA Polymerases/genetics , Gene Expression Profiling/standards , Neuroendocrine Cells/metabolism , Organ Specificity , Protein Footprinting/standards , RNA-Seq/standards , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Site-Specific DNA-Methyltransferase (Adenine-Specific)/genetics
12.
J Biol Methods ; 7(1): e129, 2020.
Article in English | MEDLINE | ID: mdl-32313814

ABSTRACT

Nociception and its plasticity are essential biological processes controlling adaptive behavioral responses in animals. These processes are also linked to different pain conditions in human and have received considerable attention, notably via studies in rodent models and the use of heat-evoked withdrawal behavior assays as a readout of unpleasant experience. More recently, invertebrates have also emerged as useful complementary models, with their own set of advantages, including their amenability to genetic manipulations, the accessibility and relative simplicity of their nervous system and ethical concerns linked to animal suffering. Like humans, the nematode Caenorhabditis elegans (C. elegans) can detect noxious heat and produce avoidance responses such as reversals. Here, we present a methodology suitable for the high-throughput analysis of C. elegans heat-evoked reversals and the adaptation to repeated stimuli. We introduce two platforms: the INFERNO (for infrared-evoked reversal analysis platform), allowing the quantification of the thermal sensitivity in a petri dish containing a large population (> 100 animals), and the ThermINATOR (for thermal adaptation multiplexed induction platform), allowing the mass-adaptation of up to 18 worm populations at the same time. We show that wild type animals progressively desensitize in response to repeated noxious heat pulses. Furthermore, analyzing the phenotype of mutant animals, we show that the mechanisms underlying baseline sensitivity and adaptation, respectively, are supported by genetically separable molecular pathways. In conclusion, the presented method enables the high-throughput evaluation of thermal avoidance in C. elegans and will contribute to accelerate studies in the field with this invertebrate model.

13.
Cell Rep ; 30(2): 397-408.e4, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31940484

ABSTRACT

Pain sensation and aversive behaviors entail the activation of nociceptor neurons, whose function is largely conserved across animals. The functional heterogeneity of nociceptors and ethical concerns are challenges for their study in mammalian models. Here, we investigate the function of a single type of genetically identified C. elegans thermonociceptor named FLP. Using calcium imaging in vivo, we demonstrate that FLP encodes thermal information in a tonic and graded manner over a wide thermal range spanning from noxious cold to noxious heat (8°C-36°C). This tonic-signaling mode allows FLP to trigger sustained behavioral changes necessary for escape behavior. Furthermore, we identify specific transient receptor potential, voltage-gated calcium, and sodium "leak" channels controlling sensory gain, thermal sensitivity, and signal kinetics, respectively, and show that the ryanodine receptor is required for long-lasting activation. Our work elucidates the task distribution among specific ion channels to achieve remarkable sensory properties in a tonic thermonociceptor in vivo.


Subject(s)
Ion Channels/metabolism , Optogenetics/methods , Thermosensing/physiology , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Nociceptors/metabolism , Temperature
14.
PLoS Genet ; 15(12): e1008509, 2019 12.
Article in English | MEDLINE | ID: mdl-31891575

ABSTRACT

Understanding how the nervous system bridges sensation and behavior requires the elucidation of complex neural and molecular networks. Forward genetic approaches, such as screens conducted in C. elegans, have successfully identified genes required to process natural sensory stimuli. However, functional redundancy within the underlying neural circuits, which are often organized with multiple parallel neural pathways, limits our ability to identify 'neural pathway-specific genes', i.e. genes that are essential for the function of some, but not all of these redundant neural pathways. To overcome this limitation, we developed a 'forward optogenetics' screening strategy in which natural stimuli are initially replaced by the selective optogenetic activation of a specific neural pathway. We used this strategy to address the function of the polymodal FLP nociceptors mediating avoidance of noxious thermal and mechanical stimuli. According to our expectations, we identified both mutations in 'general' avoidance genes that broadly impact avoidance responses to a variety of natural noxious stimuli (unc-4, unc-83, and eat-4) and mutations that produce a narrower impact, more restricted to the FLP pathway (syd-2, unc-14 and unc-68). Through a detailed follow-up analysis, we further showed that the Ryanodine receptor UNC-68 acts cell-autonomously in FLP to adjust heat-evoked calcium signals and aversive behaviors. As a whole, our work (i) reveals the importance of properly regulated ER calcium release for FLP function, (ii) provides new entry points for new nociception research and (iii) demonstrates the utility of our forward optogenetic strategy, which can easily be transposed to analyze other neural pathways.


Subject(s)
Avoidance Learning , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/physiology , Optogenetics/methods , Animals , Caenorhabditis elegans/genetics , Calcium Signaling , Cytoskeletal Proteins/genetics , Gene Expression Regulation , Homeodomain Proteins/genetics , Intercellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Nuclear Proteins/genetics , Receptors, Glutamate/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Vesicular Glutamate Transport Proteins
15.
J Neurosci ; 38(27): 6114-6129, 2018 07 04.
Article in English | MEDLINE | ID: mdl-29875264

ABSTRACT

The ability to adapt behavior to environmental fluctuations is critical for survival of organisms ranging from invertebrates to mammals. Caenorhabditis elegans can learn to avoid sodium chloride when it is paired with starvation. This behavior may help animals avoid areas without food. Although some genes have been implicated in this salt-aversive learning behavior, critical genetic components, and the neural circuit in which they act, remain elusive. Here, we show that the sole worm ortholog of mammalian CaMKI/IV, CMK-1, is essential for salt-aversive learning behavior in C. elegans hermaphrodites. We find that CMK-1 acts in the primary salt-sensing ASE neurons to regulate this behavior. By characterizing the intracellular calcium dynamics in ASE neurons using microfluidics, we find that loss of cmk-1 has subtle effects on sensory-evoked calcium responses in ASE axons and their modulation by salt conditioning. Our study implicates the expression of the conserved CaMKI/CMK-1 in chemosensory neurons as a regulator of behavioral plasticity to environmental salt in C. elegansSIGNIFICANCE STATEMENT Like other animals, the nematode Caenorhabditis elegans depends on salt for survival and navigates toward high concentrations of this essential mineral. In addition to its role as an essential nutrient, salt also causes osmotic stress at high concentrations. A growing body of evidence indicates that C. elegans balances the requirement for salt with the danger it presents through a process called salt-aversive learning. We show that this behavior depends on expression of a calcium/calmodulin-dependent kinase, CMK-1, in the ASE salt-sensing neurons. Our study identifies CMK-1 and salt-sensitive chemosensory neurons as key factors in this form of behavioral plasticity.


Subject(s)
Behavior, Animal/physiology , Caenorhabditis elegans Proteins/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Chemoreceptor Cells/metabolism , Chemotaxis/physiology , Learning/physiology , Animals , Animals, Genetically Modified , Caenorhabditis elegans
16.
G3 (Bethesda) ; 7(2): 607-615, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28108553

ABSTRACT

The Green Fluorescent Protein (GFP) has been tremendously useful in investigating cell architecture, protein localization, and protein function. Recent developments in transgenesis and genome editing methods now enable working with fewer transgene copies and, consequently, with physiological expression levels. However, lower signal intensity might become a limiting factor. The recently developed mNeonGreen protein is a brighter alternative to GFP in vitro The goal of the present study was to determine how mNeonGreen performs in vivo in Caenorhabditis elegans-a model used extensively for fluorescence imaging in intact animals. We started with a side-by-side comparison between cytoplasmic forms of mNeonGreen and GFP expressed in the intestine, and in different neurons, of adult animals. While both proteins had similar photostability, mNeonGreen was systematically 3-5 times brighter than GFP. mNeonGreen was also used successfully to trace endogenous proteins, and label specific subcellular compartments such as the nucleus or the plasma membrane. To further demonstrate the utility of mNeonGreen, we tested transcriptional reporters for nine genes with unknown expression patterns. While mNeonGreen and GFP reporters gave overall similar expression patterns, low expression tissues were detected only with mNeonGreen. As a whole, our work establishes mNeonGreen as a brighter alternative to GFP for in vivo imaging in a multicellular organism. Furthermore, the present research illustrates the utility of mNeonGreen to tag proteins, mark subcellular regions, and describe new expression patterns, particularly in tissues with low expression.


Subject(s)
Cell Tracking/methods , Green Fluorescent Proteins/pharmacology , Luminescent Proteins/pharmacology , Optical Imaging/methods , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Green Fluorescent Proteins/chemistry , Intestines/cytology , Luminescent Proteins/chemistry , Microscopy, Fluorescence , Neurons/cytology , Transgenes/genetics
17.
Curr Opin Neurobiol ; 41: 92-98, 2016 12.
Article in English | MEDLINE | ID: mdl-27657982

ABSTRACT

Adapting behavior to thermal cues is essential for animal growth and survival. Indeed, each and every biological and biochemical process is profoundly affected by temperature and its extremes can cause irreversible damage. Hence, animals have developed thermotransduction mechanisms to detect and encode thermal information in the nervous system and acclimation mechanisms to finely tune their response over different timescales. While temperature-gated TRP channels are the best described class of temperature sensors, recent studies highlight many new candidates, including ionotropic and metabotropic receptors. Here, we review recent findings in vertebrate and invertebrate models, which highlight and substantiate the role of new candidate molecular thermometers and reveal intracellular signaling mechanisms implicated in thermal acclimation at the behavioral and cellular levels.


Subject(s)
Environment , Sensation/physiology , Signal Transduction , Temperature , Animals
18.
Genetics ; 200(4): 1029-34, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26022242

ABSTRACT

By enabling a tight control of cell excitation, optogenetics is a powerful approach to study the function of neurons and neural circuits. With its transparent body, a fully mapped nervous system, easily quantifiable behaviors and many available genetic tools, Caenorhabditis elegans is an extremely well-suited model to decipher the functioning logic of the nervous system with optogenetics. Our goal was to establish an efficient dual color optogenetic system for the independent excitation of different neurons in C. elegans. We combined two recently discovered channelrhodopsins: the red-light sensitive Chrimson from Chlamydomonas noctigama and the blue-light sensitive CoChR from Chloromonas oogama. Codon-optimized versions of Chrimson and CoChR were designed for C. elegans and expressed in different mechanosensory neurons. Freely moving animals produced robust behavioral responses to light stimuli of specific wavelengths. Since CoChR was five times more sensitive to blue light than the commonly used ChR2, we were able to use low blue light intensities producing no cross-activation of Chrimson. Thanks to these optogenetics tools, we revealed asymmetric cross-habituation effects between the gentle and harsh touch sensory motor pathways. Collectively, our results establish the Chrimson/CoChR pair as a potent tool for bimodal neural excitation in C. elegans and equip this genetic model organism for the next generation of in vivo optogenetic analyses.


Subject(s)
Behavior Control/methods , Caenorhabditis elegans/genetics , Caenorhabditis elegans/radiation effects , Neurons/radiation effects , Optogenetics/methods , Plant Proteins/genetics , Rhodopsin/genetics , Animals , Avoidance Learning/radiation effects , Chlamydomonas/genetics , Color , Habituation, Psychophysiologic/genetics , Habituation, Psychophysiologic/radiation effects , Light , Neurons/metabolism , Nociceptors/metabolism , Nociceptors/radiation effects , Touch Perception/genetics , Touch Perception/radiation effects
19.
Neuron ; 84(5): 983-96, 2014 Dec 03.
Article in English | MEDLINE | ID: mdl-25467982

ABSTRACT

Through encounters with predators, competitors, and noxious stimuli, animals have evolved defensive responses that minimize injury and are essential for survival. Physiological adaptation modulates the stimulus intensities that trigger such nocifensive behaviors, but the molecular networks that define their operating range are largely unknown. Here, we identify a gain-of-function allele of the cmk-1 CaMKI gene in C. elegans and show that loss of the regulatory domain of the CaMKI enzyme produces thermal analgesia and shifts the operating range for nocifensive heat avoidance to higher temperatures. Such analgesia depends on nuclear CMK-1 signaling, while cytoplasmic CMK-1 signaling lowers the threshold for thermal avoidance. CMK-1 acts downstream of heat detection in thermal receptor neurons and controls neuropeptide release. Our results establish CaMKI as a key regulator of the operating range for nocifensive behaviors and suggest strategies for producing thermal analgesia through the regulation of CaMKI-dependent signaling.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Escape Reaction/physiology , Hot Temperature/adverse effects , Neurons/cytology , Nociception/physiology , Signal Transduction/physiology , Adaptation, Physiological , Animals , Animals, Genetically Modified , Avoidance Learning/physiology , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 1/genetics , Cell Nucleolus/metabolism , Cytoplasm/metabolism , Mutagenesis , Mutation/genetics , Neuropeptides/metabolism , Sensory Receptor Cells , Signal Transduction/genetics
20.
PLoS Genet ; 10(10): e1004718, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25340742

ABSTRACT

Parkinson's disease (PD) is the most common neurodegenerative movement disorder characterized by the progressive loss of dopaminergic (DA) neurons. Both environmental and genetic factors are thought to contribute to the pathogenesis of PD. Although several genes linked to rare familial PD have been identified, endogenous risk factors for sporadic PD, which account for the majority of PD cases, remain largely unknown. Genome-wide association studies have identified many single nucleotide polymorphisms associated with sporadic PD in neurodevelopmental genes including the transcription factor p48/ptf1a. Here we investigate whether p48 plays a role in the survival of DA neurons in Drosophila melanogaster and Caenorhabditis elegans. We show that a Drosophila p48 homolog, 48-related-2 (Fer2), is expressed in and required for the development and survival of DA neurons in the protocerebral anterior medial (PAM) cluster. Loss of Fer2 expression in adulthood causes progressive PAM neuron degeneration in aging flies along with mitochondrial dysfunction and elevated reactive oxygen species (ROS) production, leading to the progressive locomotor deficits. The oxidative stress challenge upregulates Fer2 expression and exacerbates the PAM neuron degeneration in Fer2 loss-of-function mutants. hlh-13, the worm homolog of p48, is also expressed in DA neurons. Unlike the fly counterpart, hlh-13 loss-of-function does not impair development or survival of DA neurons under normal growth conditions. Yet, similar to Fer2, hlh-13 expression is upregulated upon an acute oxidative challenge and is required for the survival of DA neurons under oxidative stress in adult worms. Taken together, our results indicate that p48 homologs share a role in protecting DA neurons from oxidative stress and degeneration, and suggest that loss-of-function of p48 homologs in flies and worms provides novel tools to study gene-environmental interactions affecting DA neuron survival.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Caenorhabditis elegans Proteins/biosynthesis , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , Oxidative Stress/genetics , Parkinson Disease/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Dopaminergic Neurons/metabolism , Drosophila melanogaster , Gene Expression Regulation , Parkinson Disease/metabolism , Parkinson Disease/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...