Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
Opt Express ; 17(9): 7019-24, 2009 Apr 27.
Article in English | MEDLINE | ID: mdl-19399076

ABSTRACT

Periodic arrays of subwavelength apertures in metal films have been shown to exhibit strongly enhanced transmission at wavelengths determined by the periodicity of the film as well as the optical properties of the metal and surrounding dielectric material. Here we investigate the coupling between such a grating and a Quantum Cascade Laser. By actively tuning the optical properties of our grating, we control the coupling of laser light to the plasmonic structure, switching our grating from a predominantly transmitting state to a state that allows coupling to propagating surface waves, which can then be imaged on the metallic surface.


Subject(s)
Lasers , Metals/chemistry , Models, Chemical , Refractometry/methods , Surface Plasmon Resonance/methods , Computer Simulation , Infrared Rays , Light , Scattering, Radiation
2.
Opt Express ; 13(16): 5953-60, 2005 Aug 08.
Article in English | MEDLINE | ID: mdl-19498602

ABSTRACT

Quantum cascade lasers and unclad silver halide fibers were used to assemble mid-infrared fiber-optics evanescent-wave sensors suitable to measure the chemical composition of liquid droplets. The laser wavelengths were chosen to be in the regions which offer the largest absorption contrast between constituents inside the mixture droplets. A pseudo-Beer-Lambert law fits well with the experimental data. Using a 300microm diameter fiber with a 25 mm immersion length, the signal to noise ratios correspond to 1 vol.% for alpha-tocophenol in squalane and 2 vol.% for acetone in aqueous solution for laser wavenumbers of 1208 cm-1 and 1363 cm-1, respectively.

3.
Opt Express ; 12(1): 208-19, 2004 Jan 12.
Article in English | MEDLINE | ID: mdl-19471527

ABSTRACT

Mid-infrared (MIR) (3-12 um) spectral imaging is a power analytical tool, but difficult in the back-reflectance mode for in-vivo diagnostics. Feasibility of MIR back-reflectance imaging is demonstrated using MIR semiconductor lasers. Transmittance through 500-microm thick films of water and blood showed a capability to resolve more than 6-OD signal dynamic range. Reflectance scanning imaging through a 150-microm thick film of blood showed negligible scattering effect, indicating the feasibility of optical coherent imaging. The result of coherent imaging of a plant leaf shows a MIR sub-surface image that would not be visible in white light. With two wavelengths, a similar result for a chicken skin subcutaneous tissue at different focal depths was obtained, showing blood vessels beneath a lipid layer. These results suggest that advanced multilaser wavelength systems in the fingerprint spectral region can be a useful tool for in-vivo spectral imaging in biomedical research and diagnostic applications.

4.
Appl Phys B ; 74(1): 95-9, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11911164

ABSTRACT

We report the first application of pulsed, near-room-temperature quantum cascade laser technology to the continuous detection of biogenic CO production rates above viable cultures of vascular smooth muscle cells. A computer-controlled sequence of measurements over a 9-h period was obtained, resulting in a minimum detectable CO production of 20 ppb in a 1-m optical path above a standard cell-culture flask. Data-processing procedures for real-time monitoring of both biogenic and ambient atmospheric CO concentrations are described.


Subject(s)
Carbon Monoxide/analysis , Carbon Monoxide/metabolism , Environmental Monitoring/instrumentation , Lasers , Muscle, Smooth, Vascular/metabolism , Spectrophotometry, Infrared , Air Conditioning , Animals , Cells, Cultured , Environmental Monitoring/methods , Life Support Systems/instrumentation , Muscle, Smooth, Vascular/cytology , Rats , Signal Processing, Computer-Assisted , Temperature
5.
Opt Lett ; 27(3): 170-2, 2002 Feb 01.
Article in English | MEDLINE | ID: mdl-18007745

ABSTRACT

The intrinsic frequency fluctuations of two single-mode quantum cascade (QC) distributed-feedback lasers operating continuously at a wavelength of 8.5 mum are reported. A Doppler-limited rovibrational resonance of nitrous oxide is used to transform the frequency noise into measurable intensity fluctuations. The QC lasers, along with recently improved current controllers, exhibit a free-running frequency stability of 150 kHz over a 15-ms time interval.

6.
Appl Phys B ; 72(7): 859-63, 2001 May.
Article in English | MEDLINE | ID: mdl-11795325

ABSTRACT

Two configurations of a continuous wave quantum cascade distributed feedback laser-based gas sensor for the detection of NO at a parts per billion (ppb) concentration level, typical of biomedical applications, have been investigated. The laser was operated at liquid nitrogen temperature near lambda = 5.2 microns. In the first configuration, a 100 m optical path length multi-pass cell was employed to enhance the NO absorption. In the second configuration, a technique based on cavity-enhanced spectroscopy (CES) was utilized, with an effective path length of 670 m. Both sensors enabled simultaneous analysis of NO and CO2 concentrations in exhaled air. The minimum detectable NO concentration was found to be 3 ppb with a multi-pass cell and 16 ppb when using CES. The two techniques are compared, and potential future developments are discussed.


Subject(s)
Breath Tests/instrumentation , Nitric Oxide/analysis , Breath Tests/methods , Carbon Dioxide/analysis , Evaluation Studies as Topic , Lasers , Quantum Theory , Spectrum Analysis , Water/analysis
7.
Laser Phys ; 11(1): 39-49, 2001 Jan.
Article in English | MEDLINE | ID: mdl-12143896

ABSTRACT

Novel pulsed and cw quantum cascade distributed feedback (QC-DFB) lasers operating near lambda=8 micrometers were used for detection and quantification of trace gases in ambient air by means of sensitive absorption spectroscopy. N2O, 12CH4, 13CH4, and different isotopic species of H2O were detected. Also, a highly selective detection of ethanol vapor in air with a sensitivity of 125 parts per billion by volume (ppb) was demonstrated.


Subject(s)
Air Pollution, Indoor/analysis , Environmental Monitoring/instrumentation , Lasers , Spectrophotometry, Atomic/instrumentation , Environmental Monitoring/methods , Equipment Design , Ethanol/analysis , Evaluation Studies as Topic , Gases/analysis , Methane/analysis , Nitrous Oxide/analysis , Quantum Theory , Temperature , Water/analysis
8.
Appl Opt ; 40(3): 321-6, 2001 Jan 20.
Article in English | MEDLINE | ID: mdl-18357003

ABSTRACT

A tunable quantum-cascade (QC) laser has been flown on NASA's ER-2 high-altitude aircraft to produce the first atmospheric gas measurements with this newly invented device, an important milestone in the QC laser's future planetary, industrial, and commercial applications. Using a cryogenically cooled QC laser during a series of 20 aircraft flights beginning in September 1999 and extending through March 2000, we took measurements of methane (CH(4)) and nitrous oxide (N(2)O) gas up to ~20 km in the stratosphere over North America, Scandinavia, and Russia. The QC laser operating near an 8-mum wavelength was produced by the groups of Capasso and Cho of Bell Laboratories, Lucent Technologies, where QC lasers were invented in 1994. Compared with its companion lead salt diode lasers that were also flown on these flights, the single-mode QC laser cooled to 82 K and produced higher output power (10 mW), narrower laser linewidth (17 MHz), increased measurement precision (a factor of 3), and better spectral stability (~0.1 cm(-1) K). The sensitivity of the QC laser channel was estimated to correspond to a minimum-detectable mixing ratio for methane of approximately 2 parts per billion by volume.

9.
Appl Opt ; 40(6): 812-20, 2001 Feb 20.
Article in English | MEDLINE | ID: mdl-18357061

ABSTRACT

Distributed-feedback quantum-cascade (QC) lasers are expected to form the heart of the next-generation mid-IR laser absorption spectrometers, especially as they are applied to measurements of trace gases in a variety of environments. The incorporation of room-temperature-operable, single-mode QC lasers should result in highly compact and rugged sensors for real-world applications. We report preliminary results on the performance of a laser absorption spectrometer that uses a QC laser operating at room temperature in a quasi-cw mode in conjunction with balanced ratiometric detection. We have demonstrated sensitivities for N(2)O [10 parts in 10(6) volume-mixing ratio for a 1-m path (ppmv-m)] and NO [520 parts in 10(9) volume-mixing ratio for a 1-m path (ppbv-m)] at 5.4 mum. System improvements are described that are expected to result in a 2 orders of magnitude increase in sensitivity.

10.
Appl Opt ; 40(30): 5522-9, 2001 Oct 20.
Article in English | MEDLINE | ID: mdl-18364839

ABSTRACT

A spectroscopic gas sensor for nitric oxide (NO) detection based on a cavity ringdown technique was designed and evaluated. A cw quantum-cascade distributed-feedback laser operating at 5.2 mum was used as a tunable single-frequency light source. Both laser-frequency tuning and abrupt interruptions of the laser radiation were performed through manipulation of the laser current. A single ringdown event sensitivity to absorption of 2.2 x 10(-8) cm(-1) was achieved. Measurements of parts per billion (ppb) NO concentrations in N(2) with a 0.7-ppb standard error for a data collection time of 8 s have been performed. Future improvements are discussed that would allow quantification of NO in human breath.

11.
Science ; 290(5497): 1739-42, 2000 Dec 01.
Article in English | MEDLINE | ID: mdl-11099406

ABSTRACT

We report on the generation of picosecond self-mode-locked pulses from midinfrared quantum cascade lasers, at wavelengths within the important molecular fingerprint region. These devices are based on intersubband electron transitions in semiconductor nanostructures, which are characterized by some of the largest optical nonlinearities observed in nature and by picosecond relaxation lifetimes. Our results are interpreted with a model in which one of these nonlinearities, the intensity-dependent refractive index of the lasing transition, creates a nonlinear waveguide where the optical losses decrease with increasing intensity. This favors the generation of ultrashort pulses, because of their larger instantaneous intensity relative to continuous-wave emission.

12.
Opt Lett ; 25(4): 230-2, 2000 Feb 15.
Article in English | MEDLINE | ID: mdl-18059838

ABSTRACT

Quantum-cascade distributed-feedback lasers with high-power, continuous-wave (cw), tunable, single-mode emission are reported. The emission wavelengths are near 5.2 and 7.95 mum. The lasers are operated at liquid-nitrogen temperature and above. A maximum output power of >100 mW is obtained per facet at 80 K for both wavelengths, which is the result of careful positioning of the peak gain with respect to the Bragg wavelength. Continuous tuning with either heat-sink temperature or cw current is demonstrated. The tuning coefficients are 0.35 nm/K (5.2 mum) and 0.51 nm/K(7.95 mum) for thermal tuning and vary from 20 to 40 nm/A for tuning with current. The lasers are being used in high-resolution and high-sensitivity gas-sensing applications.

13.
Opt Lett ; 25(9): 666-8, 2000 May 01.
Article in English | MEDLINE | ID: mdl-18064145

ABSTRACT

Cavity ringdown spectra of ammonia at 10 parts in 10(9) by volume (ppbv) and higher concentrations were recorded by use of a 16-mW continuous-wave quantum-casacde distributed-feedback laser at 8.5 mum whose wavelength was continuously temperature tuned over 15 nm. A sensitivity (noise-equivalent absorbance) of 3.4x10(-9) cm(-1) Hz(-1/2) was achieved for ammonia in nitrogen at standard temperature and pressure, which corresponds to a detection limit of 0.25 ppbv.

14.
Opt Lett ; 25(16): 1162-4, 2000 Aug 15.
Article in English | MEDLINE | ID: mdl-18066154

ABSTRACT

We have demonstrated quantitative chemical vapor detection with a multimode quantum cascade (QC) laser. Experiments incorporated pseudorandom code (PRC) modulation of the laser intensity to permit sensitive absorption measurements of isopropanol vapor at 8.0micro . The demonstration shows the practicality of one technical approach for implementing low-peak-power QC lasers in the transmitter portion of a differential absorption lidar (DIAL) system. With a 31-chip, 300-ns/chip PRC sequence, the measured isopropanol detection limit was 12 parts in 10(6) by volume times meters (~3x10(-3) absorption) for a simple backscatter-absorption measurement configuration.

15.
Appl Opt ; 39(36): 6866-72, 2000 Dec 20.
Article in English | MEDLINE | ID: mdl-18354700

ABSTRACT

A pulsed quantum-cascade distributed feedback laser operating at near room temperature was used for sensitive high-resolution IR absorption spectroscopy of ambient air at a wavelength of approximately 8 microm. Near-transform-limited laser pulses were obtained owing to short (approximately 5-ns) current pulse excitation and optimized electrical coupling. Fast and slow computer-controlled frequency scanning techniques were implemented and characterized. Fast computer-controlled laser wavelength switching was used to acquire second-derivative absorption spectra. The minimum detectable absorption was found to be 3 x 10(-4) with 10(5) laser pulses (20-kHz repetition rate), and 1.7 x 10(-4) for 5 x 10(5) pulses, based on the standard deviation of the linear regression analysis.

16.
Opt Express ; 7(7): 243-8, 2000 Sep 25.
Article in English | MEDLINE | ID: mdl-19407872

ABSTRACT

A quantum cascade distributed feedback laser operating at 5.2 microm is used to obtain sub-Doppler resolution limited saturation features in a Lamb-dip experiment on the R(13.5)1/2 and R(13.5)3/2 transitions of NO. The dips appear as transmission spikes with full widths of ~ 4.3 MHz. At this resolution the 73 MHz _-doubling of the R(13.5)3/2 line, which is normally obscured by the 130 MHz Doppler broadening, is easily resolved.

17.
Appl Opt ; 39(24): 4425-30, 2000 Aug 20.
Article in English | MEDLINE | ID: mdl-11543546

ABSTRACT

A variable duty cycle quasi-cw frequency scanning technique was applied to reduce thermal effects resulting from the high heat dissipation of type I quantum-cascade lasers. This technique was combined with a 100-m path-length multipass cell and a zero-air background-subtraction technique to enhance detection sensitivity to a parts-in-10(9) (ppb) concentration level for spectroscopic trace-gas detection of CH4, N2O, H2O, and C2H5OH in ambient air at 7.9 micrometers. A new technique for analysis of dense high resolution absorption spectra was applied to detection of ethanol in ambient air, yielding a 125-ppb detection limit.


Subject(s)
Air Pollution, Indoor/analysis , Environmental Monitoring/instrumentation , Gases/analysis , Lasers , Spectrophotometry, Atomic/instrumentation , Equipment Design , Ethanol/analysis , Evaluation Studies as Topic , Linear Models , Methane/analysis , Nitrous Oxide/analysis , Temperature , Water/analysis
18.
Science ; 286(5440): 749-752, 1999 Oct 22.
Article in English | MEDLINE | ID: mdl-10531055

ABSTRACT

A semiconductor laser capable of operating under both positive and negative bias voltage is reported. Its active region behaves functionally as two different laser materials, emitting different wavelengths, depending on the design, when biased with opposite polarities. This concept was used for the generation of two wavelengths (6.3 and 6.5 micrometers) in the midinfrared region of the spectrum from a single quantum cascade laser structure. The two wavelengths are excited independently of each other and separated in time. This may have considerable impact on various semiconductor laser applications including trace gas analysis in remote sensing applications with differential absorption spectroscopy.

19.
Opt Lett ; 24(3): 178-80, 1999 Feb 01.
Article in English | MEDLINE | ID: mdl-18071446

ABSTRACT

Photoacoustic spectra of ammonia and water vapor were recorded by use of a continuous-wave quantum-cascade distributed-feedback (QC-DFB) laser at 8.5 mum with a 16-mW power output. The gases were flowed through a cell that was resonant at 1.6 kHz, and the QC-DFB source was temperature tuned over 35 nm for generation of spectra or was temperature stabilized on an absorption feature peak to permit real-time concentration measurements. A detection limit of 100 parts in 10(9) by volume ammonia at standard temperature and pressure was obtained for a 1-Hz bandwidth in a measurement time of 10 min.

20.
Opt Lett ; 24(24): 1844-6, 1999 Dec 15.
Article in English | MEDLINE | ID: mdl-18079950

ABSTRACT

Frequency stabilization of mid-IR quantum cascade (QC) lasers to the kilohertz level has been accomplished by use of electronic servo techniques. With this active feedback, an 8.5-microm QC distributed-feedback laser is locked to the side of a rovibrational resonance of nitrous oxide (N(2) O) at 1176.61cm (-1) . A stabilized frequency-noise spectral density of 42Hz/ radicalHz has been measured at 100 kHz; the calculated laser linewidth is 12 kHz.

SELECTION OF CITATIONS
SEARCH DETAIL