Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 16(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38932152

ABSTRACT

The human hepatitis delta virus (HDV) is a satellite RNA virus that depends on hepatitis B virus (HBV) surface proteins (HBsAg) to assemble into infectious virions targeting the same organ (liver) as HBV. Until recently, the evolutionary origin of HDV remained largely unknown. The application of bioinformatics on whole sequence databases lead to discoveries of HDV-like agents (DLA) and shed light on HDV's evolution, expanding our understanding of HDV biology. DLA were identified in heterogeneous groups of vertebrates and invertebrates, highlighting that the evolution of HDV, represented by eight distinct genotypes, is broader and more complex than previously foreseen. In this study, we focused on the characterization of three mammalian DLA discovered in woodchuck (Marmota monax), white-tailed deer (Odocoileus virginianus), and lesser dog-like bat (Peropteryx macrotis) in terms of replication, cell-type permissiveness, and spreading pathways. We generated replication-competent constructs expressing 1.1-fold over-length antigenomic RNA of each DLA. Replication was initiated by transfecting the cDNAs into human (HuH7, HeLa, HEK293T, A549) and non-human (Vero E6, CHO, PaKi, LMH) cell lines. Upon transfection and replication establishment, none of the DLA expressed a large delta antigen. A cell division-mediated viral amplification assay demonstrated the capability of non-human DLA to replicate and propagate in hepatic and non-hepatic tissues, without the requirement of envelope proteins from a helper virus. Remarkably L-HDAg but not S-HDAg from HDV can artificially mediate envelopment of WoDV and DeDV ribonucleoproteins (RNPs) by HBsAg to form infectious particles, as demonstrated by co-transfection of HuH7 cells with the respective DLA expression constructs and a plasmid encoding HBV envelope proteins. These chimeric viruses are sensitive to HDV entry inhibitors and allow synchronized infections for comparative replication studies. Our results provide a more detailed understanding of the molecular biology, evolution, and virus-host interaction of this unique group of animal viroid-like agents in relation to HDV.


Subject(s)
Hepatitis B virus , Hepatitis Delta Virus , Marmota , Virus Replication , Animals , Hepatitis Delta Virus/genetics , Hepatitis Delta Virus/physiology , Humans , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Marmota/virology , Cell Division , Chiroptera/virology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Cell Line , Hepatitis B/virology , Hepatitis B Surface Antigens/genetics , Hepatitis B Surface Antigens/metabolism , Genotype , HEK293 Cells , Hepatitis D/virology , RNA, Viral/genetics , RNA, Viral/metabolism
2.
Am J Hum Genet ; 111(6): 1018-1034, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38749427

ABSTRACT

Evolutionary changes in the hepatitis B virus (HBV) genome could reflect its adaptation to host-induced selective pressure. Leveraging paired human exome and ultra-deep HBV genome-sequencing data from 567 affected individuals with chronic hepatitis B, we comprehensively searched for the signatures of this evolutionary process by conducting "genome-to-genome" association tests between all human genetic variants and viral mutations. We identified significant associations between an East Asian-specific missense variant in the gene encoding the HBV entry receptor NTCP (rs2296651, NTCP S267F) and mutations within the receptor-binding region of HBV preS1. Through in silico modeling and in vitro preS1-NTCP binding assays, we observed that the associated HBV mutations are in proximity to the NTCP variant when bound and together partially increase binding affinity to NTCP S267F. Furthermore, we identified significant associations between HLA-A variation and viral mutations in HLA-A-restricted T cell epitopes. We used in silico binding prediction tools to evaluate the impact of the associated HBV mutations on HLA presentation and observed that mutations that result in weaker binding affinities to their cognate HLA alleles were enriched. Overall, our results suggest the emergence of HBV escape mutations that might alter the interaction between HBV PreS1 and its cellular receptor NTCP during viral entry into hepatocytes and confirm the role of HLA class I restriction in inducing HBV epitope variations.


Subject(s)
Hepatitis B virus , Mutation , Organic Anion Transporters, Sodium-Dependent , Symporters , Humans , Hepatitis B virus/genetics , Organic Anion Transporters, Sodium-Dependent/genetics , Organic Anion Transporters, Sodium-Dependent/metabolism , Symporters/genetics , Symporters/metabolism , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Hepatitis B, Chronic/virology , Hepatitis B, Chronic/genetics , Genome, Viral , Hepatitis B Surface Antigens/genetics , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Genomics/methods , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL