Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Genome Biol Evol ; 16(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38957923

ABSTRACT

We present the first long-read de novo assembly and annotation of the luna moth (Actias luna) and provide the full characterization of heavy chain fibroin (h-fibroin), a long and highly repetitive gene (>20 kb) essential in silk fiber production. There are >160,000 described species of moths and butterflies (Lepidoptera), but only within the last 5 years have we begun to recover high-quality annotated whole genomes across the order that capture h-fibroin. Using PacBio HiFi reads, we produce the first high-quality long-read reference genome for this species. The assembled genome has a length of 532 Mb, a contig N50 of 16.8 Mb, an L50 of 14 contigs, and 99.4% completeness (BUSCO). Our annotation using Bombyx mori protein and A. luna RNAseq evidence captured a total of 20,866 genes at 98.9% completeness with 10,267 functionally annotated proteins and a full-length h-fibroin annotation of 2,679 amino acid residues.


Subject(s)
Fibroins , Genome, Insect , Molecular Sequence Annotation , Moths , Animals , Moths/genetics , Fibroins/genetics , Silk/genetics , Insect Proteins/genetics , Bombyx/genetics , Repetitive Sequences, Nucleic Acid
2.
Proc Biol Sci ; 288(1947): 20210199, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33757353

ABSTRACT

Many comparative neurobiological studies seek to connect sensory or behavioural attributes across taxa with differences in their brain composition. Recent studies in vertebrates suggest cell number and density may be better correlated with behavioural ability than brain mass or volume, but few estimates of such figures exist for insects. Here, we use the isotropic fractionator (IF) method to estimate total brain cell numbers for 32 species of Hymenoptera spanning seven subfamilies. We find estimates from using this method are comparable to traditional, whole-brain cell counts of two species and to published estimates from established stereological methods. We present allometric scaling relationships between body and brain mass, brain mass and nuclei number, and body mass and cell density and find that ants stand out from bees and wasps as having particularly small brains by measures of mass and cell number. We find that Hymenoptera follow the general trend of smaller animals having proportionally larger brains. Smaller Hymenoptera also feature higher brain cell densities than the larger ones, as is the case in most vertebrates, but in contrast with primates, in which neuron density remains rather constant across changes in brain mass. Overall, our findings establish the IF as a useful method for comparative studies of brain size evolution in insects.


Subject(s)
Ants , Hymenoptera , Wasps , Animals , Bees , Brain , Cell Count , Primates
SELECTION OF CITATIONS
SEARCH DETAIL