Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters











Publication year range
1.
Nat Cardiovasc Res ; 3(8): 915-932, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39196027

ABSTRACT

Senescence plays a key role in various physiological and pathological processes. We reported that injury-induced transient senescence correlates with heart regeneration, yet the multi-omics profile and molecular underpinnings of regenerative senescence remain obscure. Using proteomics and single-cell RNA sequencing, here we report the regenerative senescence multi-omic signature in the adult mouse heart and establish its role in neonatal heart regeneration and agrin-mediated cardiac repair in adult mice. We identified early growth response protein 1 (Egr1) as a regulator of regenerative senescence in both models. In the neonatal heart, Egr1 facilitates angiogenesis and cardiomyocyte proliferation. In adult hearts, agrin-induced senescence and repair require Egr1, activated by the integrin-FAK-ERK-Akt1 axis in cardiac fibroblasts. We also identified cathepsins as injury-induced senescence-associated secretory phenotype components that promote extracellular matrix degradation and potentially assist in reducing fibrosis. Altogether, we uncovered the molecular signature and functional benefits of regenerative senescence during heart regeneration, with Egr1 orchestrating the process.


Subject(s)
Cell Proliferation , Cellular Senescence , Early Growth Response Protein 1 , Myocytes, Cardiac , Regeneration , Animals , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 1/genetics , Regeneration/physiology , Cellular Senescence/physiology , Myocytes, Cardiac/metabolism , Mice, Inbred C57BL , Neovascularization, Physiologic/physiology , Signal Transduction , Fibroblasts/metabolism , Mice , Proto-Oncogene Proteins c-akt/metabolism , Cells, Cultured , Animals, Newborn , Disease Models, Animal , Senescence-Associated Secretory Phenotype , Proteomics , Single-Cell Analysis , Male , Extracellular Signal-Regulated MAP Kinases/metabolism , Mice, Knockout , Focal Adhesion Kinase 1
2.
Cell Death Differ ; 31(7): 855-867, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38745079

ABSTRACT

The p53 tumor suppressor, encoded by the TP53 gene, serves as a major barrier against malignant transformation. Patients with Li-Fraumeni syndrome (LFS) inherit a mutated TP53 allele from one parent and a wild-type TP53 allele from the other. Subsequently, the wild-type allele is lost and only the mutant TP53 allele remains. This process, which is termed loss of heterozygosity (LOH), results in only mutant p53 protein expression. We used primary dermal fibroblasts from LFS patients carrying the hotspot p53 gain-of-function pathogenic variant, R248Q to study the LOH process and characterize alterations in various pathways before and after LOH. We previously described the derivation of mutant p53 reactivating peptides, designated pCAPs (p53 Conformation Activating Peptides). In this study, we tested the effect of lead peptide pCAP-250 on LOH and on its associated cellular changes. We report that treatment of LFS fibroblasts with pCAP-250 prevents the accumulation of mutant p53 protein, inhibits LOH, and alleviates its cellular consequences. Furthermore, prolonged treatment with pCAP-250 significantly reduces DNA damage and restores long-term genomic stability. pCAPs may thus be contemplated as a potential preventive treatment to prevent or delay early onset cancer in carriers of mutant p53.


Subject(s)
Fibroblasts , Li-Fraumeni Syndrome , Loss of Heterozygosity , Tumor Suppressor Protein p53 , Li-Fraumeni Syndrome/genetics , Li-Fraumeni Syndrome/pathology , Humans , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibroblasts/pathology , DNA Damage , Mutation
3.
Oncotarget ; 10(34): 3203-3206, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31191814

ABSTRACT

[This corrects the article DOI: 10.18632/oncotarget.10516.].

5.
Cell Death Differ ; 26(9): 1566-1581, 2019 09.
Article in English | MEDLINE | ID: mdl-30413783

ABSTRACT

It is well accepted that malignant transformation is associated with unique metabolism. Malignant transformation involves a variety of cellular pathways that are associated with initiation and progression of the malignant process that remain to be deciphered still. Here we used a mouse model of mutant p53 that presents a stepwise progressive transformation of adult Mesenchymal Stem Cells (MSCs). While the established parental p53Mut-MSCs induce tumors, the parental p53WT-MSCs that were established in parallel, did not. Furthermore, tumor lines derived from the parental p53Mut-MSCs (p53Mut-MSC-TLs), exhibited yet a more aggressive transformed phenotype, suggesting exacerbation in tumorigenesis. Metabolic tracing of these various cell types, indicated that while malignant transformation is echoed by a direct augmentation in glycolysis, the more aggressive p53Mut-MSC-TLs demonstrate increased mitochondrial oxidation that correlates with morphological changes in mitochondria mass and function. Finally, we show that these changes are p53Mut-dependent. Computational transcriptional analysis identified a mitochondrial gene signature specifically downregulated upon knock/out of p53Mut in MSC-TLs. Our results suggest that stem cells exhibiting different state of malignancy are also associated with a different quantitative and qualitative metabolic profile in a p53Mut-dependent manner. This may provide important insights for cancer prognosis and the use of specific metabolic inhibitors in a personalized designed cancer therapy.


Subject(s)
Mesenchymal Stem Cells/metabolism , Mitochondria/metabolism , Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Animals , Carcinogenesis/genetics , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Disease Models, Animal , Glycolysis/genetics , Humans , Mesenchymal Stem Cells/pathology , Metabolome/genetics , Mice , Mitochondria/genetics , Mutant Proteins/genetics , Mutant Proteins/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Tumor Suppressor Protein p53/metabolism
6.
Cancer Res ; 78(20): 5833-5847, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30154152

ABSTRACT

Mutations in the tumor suppressor p53 are the most frequent alterations in human cancer. These mutations include p53-inactivating mutations as well as oncogenic gain-of-function (GOF) mutations that endow p53 with capabilities to promote tumor progression. A primary challenge in cancer therapy is targeting stemness features and cancer stem cells (CSC) that account for tumor initiation, metastasis, and cancer relapse. Here we show that in vitro cultivation of tumors derived from mutant p53 murine bone marrow mesenchymal stem cells (MSC) gives rise to aggressive tumor lines (TL). These MSC-TLs exhibited CSC features as displayed by their augmented oncogenicity and high expression of CSC markers. Comparative analyses between MSC-TL with their parental mutant p53 MSC allowed for identification of the molecular events underlying their tumorigenic properties, including an embryonic stem cell (ESC) gene signature specifically expressed in MSC-TLs. Knockout of mutant p53 led to a reduction in tumor development and tumorigenic cell frequency, which was accompanied by reduced expression of CSC markers and the ESC MSC-TL signature. In human cancer, MSC-TL ESC signature-derived genes correlated with poor patient survival and were highly expressed in human tumors harboring p53 hotspot mutations. These data indicate that the ESC gene signature-derived genes may serve as new stemness-based prognostic biomarkers as well as novel cancer therapeutic targets.Significance: Mesenchymal cancer stem cell-like cell lines express a mutant p53-dependent embryonic stem cell gene signature, which can serve as a potential prognostic biomarker and therapeutic target in cancer. Cancer Res; 78(20); 5833-47. ©2018 AACR.


Subject(s)
Carcinogenesis/genetics , Embryonic Stem Cells/cytology , Gene Expression Regulation, Neoplastic , Tumor Suppressor Protein p53/genetics , Animals , Biomarkers, Tumor , CRISPR-Cas Systems , Cell Line, Tumor , Cell Proliferation , Humans , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred C57BL , Mutation , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/pathology , Prognosis
7.
Cell Death Dis ; 9(6): 647, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29844359

ABSTRACT

Liver is an important secretory organ that consistently manages various insults in order to retain whole-body homeostasis. Importantly, it was suggested that the tumor-suppressor p53 plays a role in a variety of liver physiological processes and thus it is being regarded as a systemic homeostasis regulator. Using high-throughput mass spectrometric analysis, we identified various p53-dependent liver secretome profiles. This allowed a global view on the role of p53 in maintaining the harmony of liver and whole-body homeostasis. We found that p53 altered the liver secretome differently under various conditions. Under physiological conditions, p53 controls factors that are related mainly to lipid metabolism and injury response. Upon exposure to various types of cancer therapy agents, the hepatic p53 is activated and induces the secretion of proteins related to additional pathways, such as hemostasis, immune response, and cell adhesion. Interestingly, we identified a possible relationship between p53-dependent liver functions and lung tumors. The latter modify differently liver secretome profile toward the secretion of proteins mainly related to cell migration and immune response. The notion that p53 may rewire the liver secretome profile suggests a new non-cell autonomous role of p53 that affect different liver functions and whole organism homeostasis.


Subject(s)
Liver/metabolism , Stress, Physiological , Tumor Suppressor Protein p53/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Liver/physiology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice, Inbred C57BL , Mice, Knockout
8.
Oncogene ; 37(12): 1669-1684, 2018 03.
Article in English | MEDLINE | ID: mdl-29343849

ABSTRACT

Emerging notion in carcinogenesis ascribes tumor initiation and aggressiveness to cancer stem cells (CSCs). Specifically, colorectal cancer (CRC) development was shown to be compatible with CSCs hypothesis. Mutations in p53 are highly frequent in CRC, and are known to facilitate tumor development and aggressiveness. Yet, the link between mutant p53 and colorectal CSCs is not well-established. In the present study, we set to examine whether oncogenic mutant p53 proteins may augment colorectal CSCs phenotype. By genetic manipulation of mutant p53 in several cellular systems, we demonstrated that mutant p53 enhances colorectal tumorigenesis. Moreover, mutant p53-expressing cell lines harbor larger sub-populations of cells highly expressing the known colorectal CSCs markers: CD44, Lgr5, and ALDH. This elevated expression is mediated by mutant p53 binding to CD44, Lgr5, and ALDH1A1 promoter sequences. Furthermore, ALDH1 was found to be involved in mutant p53-dependent chemotherapy resistance. Finally, analysis of ALDH1 and CD44 in human CRC biopsies indicated a positive correlation between their expression and the presence of oncogenic p53 missense mutations. These findings suggest novel insights pertaining the mechanism by which mutant p53 enhances CRC development, which involves the expansion of CSCs sub-populations within CRC tumors, and underscore the importance of targeting these sub-populations for CRC therapy.


Subject(s)
Colorectal Neoplasms/genetics , Gain of Function Mutation , Neoplastic Stem Cells/metabolism , Tumor Suppressor Protein p53/genetics , Animals , Biomarkers, Tumor/genetics , Colorectal Neoplasms/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Nude , Mice, Transgenic , Mutant Proteins/physiology , Mutation, Missense , Tumor Cells, Cultured
9.
Cell Death Differ ; 24(12): 2187-2198, 2017 12.
Article in English | MEDLINE | ID: mdl-28885617

ABSTRACT

The tumor suppressor p53 is a transcription factor that regulates the expression of a range of target genes in response to cellular stress. Adding to the complexity of understanding its cellular function is that in addition to the full-length protein, several p53 isoforms are produced in humans, harboring diverse expression patterns and functionalities. One isoform, Δ40p53, which lacks the first transactivation domain including the binding region for the negative regulator MDM2, was shown to be a product of alternative translation initiation. Here we report the discovery of an alternative cellular mechanism for Δ40p53 formation. We show that the 20S proteasome specifically cleaves the full-length protein (FLp53) to generate the Δ40p53 isoform. Moreover, we demonstrate that a dimer of FLp53 interacts with a Δ40p53 dimer, creating a functional hetero-tetramer. Consequently, the co-expression of both isoforms attenuates the transcriptional activity of FLp53 in a dominant negative manner. Finally, we demonstrate that following oxidative stress, at the time when the 20S proteasome becomes the major degradation machinery and FLp53 is activated, the formation of Δ40p53 is enhanced, creating a negative feedback loop that balances FLp53 activation. Overall, our results suggest that Δ40p53 can be generated by a 20S proteasome-mediated post-translational mechanism so as to control p53 function. More generally, the discovery of a specific cleavage function for the 20S proteasome may represent a more general cellular regulatory mechanism to produce proteins with distinct functional properties.


Subject(s)
Proteasome Endopeptidase Complex/metabolism , Protein Processing, Post-Translational , Tumor Suppressor Protein p53/metabolism , Animals , HEK293 Cells , Humans , Rats , Recombinant Proteins/metabolism
10.
Int J Cancer ; 140(6): 1364-1369, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28008605

ABSTRACT

p53 loss of heterozygosity (LOH) is a frequent event in tumors of somatic and Li-Fraumeni syndrome patients harboring p53 mutation. Here, we focused on resolving a possible crosstalk between the immune-system and p53 LOH. Previously, we reported that p53 heterozygous bone-marrow mesenchymal progenitor cells undergo p53 LOH in-vivo. Surprisingly, the loss of either the wild-type p53 allele or mutant p53 allele was detected with a three-to-one ratio in favor of losing the mutant allele. In this study, we examined whether the immune-system can affect the LOH directionality in bone marrow progenitors. We found that mesenchymal progenitor cells derived from immune-deficient mice exhibited the same preference of losing the mutant p53 allele as immune-competent matched cells, nevertheless, these animals showed a significantly shorter tumor-free survival, indicating the possible involvement of immune surveillance in this model. Surprisingly, spontaneous tumors of p53 heterozygous immune-deficient mice exhibited a significantly higher incidence of p53 LOH compared to that observed in tumors derived of p53 heterozygous immune-competent mice. These findings indicate that the immune-system may affect the p53 LOH prevalence in spontaneous tumors. Thus suggesting that the immune-system may recognize and clear cells that underwent p53 LOH, whereas in immune-compromised mice, those cells will form tumors with shorter latency. In individuals with a competent immune-system, p53 LOH independent pathways may induce malignant transformation which requires a longer tumor latency. Moreover, this data may imply that the current immunotherapy treatment aimed at abrogating the inhibition of cellular immune checkpoints may be beneficial for LFS patients.


Subject(s)
Genes, p53 , Immunologic Surveillance/immunology , Loss of Heterozygosity/immunology , Lymphoma/genetics , Mesenchymal Stem Cells/metabolism , Sarcoma, Experimental/genetics , Tumor Escape , Alleles , Animals , Bone Marrow/pathology , Genotype , Homeodomain Proteins/genetics , Immunocompromised Host , Immunologic Surveillance/genetics , Interleukin-2/deficiency , Interleukin-2/genetics , Loss of Heterozygosity/genetics , Lymphoma/immunology , Lymphoma/pathology , Mesenchymal Stem Cells/pathology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Polymorphism, Single Nucleotide , Sarcoma, Experimental/immunology , Sarcoma, Experimental/pathology , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics
11.
Oncotarget ; 7(11): 11817-37, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26943582

ABSTRACT

The p53 tumor suppressor serves as a major barrier against malignant transformation. Over 50% of tumors inactivate p53 by point mutations in its DNA binding domain. Most mutations destabilize p53 protein folding, causing its partial denaturation at physiological temperature. Thus a high proportion of human tumors overexpress a potential potent tumor suppressor in a non-functional, misfolded form. The equilibrium between the properly folded and misfolded states of p53 may be affected by molecules that interact with p53, stabilizing its native folding and restoring wild type p53 activity to cancer cells. To select for mutant p53 (mutp53) reactivating peptides, we adopted the phage display technology, allowing interactions between mutp53 and random peptide libraries presented on phages and enriching for phage that favor the correctly folded p53 conformation. We obtained a large database of potential reactivating peptides. Lead peptides were synthesized and analyzed for their ability to restore proper p53 folding and activity. Remarkably, many enriched peptides corresponded to known p53-binding proteins, including RAD9. Importantly, lead peptides elicited dramatic regression of aggressive tumors in mouse xenograft models. Such peptides might serve as novel agents for human cancer therapy.


Subject(s)
Mutant Proteins/metabolism , Mutation , Neoplasms/drug therapy , Peptide Fragments/pharmacology , Protein Conformation/drug effects , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis , Cell Proliferation , Humans , Mice , Mice, Nude , Mutant Proteins/chemistry , Mutant Proteins/genetics , Neoplasms/metabolism , Neoplasms/pathology , Tumor Cells, Cultured , Tumor Suppressor Protein p53/chemistry , Xenograft Model Antitumor Assays
12.
Proc Natl Acad Sci U S A ; 111(19): 7006-11, 2014 May 13.
Article in English | MEDLINE | ID: mdl-24778235

ABSTRACT

p53 is a well-known tumor suppressor that is mutated in over 50% of human cancers. These mutations were shown to exhibit gain of oncogenic function compared with the deletion of the gene. Additionally, p53 has fundamental roles in differentiation and development; nevertheless, mutant p53 mice are viable and develop malignant tumors only on adulthood. We set out to reveal the mechanisms by which embryos are protected from mutant p53-induced transformation using ES cells (ESCs) that express a conformational mutant of p53. We found that, despite harboring mutant p53, the ESCs remain pluripotent and benign and have relatively normal karyotype compared with ESCs knocked out for p53. Additionally, using high-content RNA sequencing, we show that p53 is transcriptionally active in response to DNA damage in mutant ESCs and elevates p53 target genes, such as p21 and btg2. We also show that the conformation of mutant p53 protein in ESCs is stabilized to a WT conformation. Through MS-based interactome analyses, we identified a network of proteins, including the CCT complex, USP7, Aurora kinase, Nedd4, and Trim24, that bind mutant p53 and may shift its conformation to a WT form. We propose this conformational shift as a novel mechanism of maintenance of genomic integrity, despite p53 mutation. Harnessing the ability of these protein interactors to transform the oncogenic mutant p53 to the tumor suppressor WT form can be the basis for future development of p53-targeted cancer therapy.


Subject(s)
Cell Transformation, Neoplastic/genetics , Embryonic Stem Cells/cytology , Li-Fraumeni Syndrome/genetics , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , Adenocarcinoma , Animals , Breast Neoplasms , Cell Line , Cell Line, Tumor , Cell Proliferation , Embryonic Development/genetics , Embryonic Stem Cells/physiology , Homeodomain Proteins/genetics , Humans , Li-Fraumeni Syndrome/metabolism , Loss of Heterozygosity/physiology , Mice , Mice, Knockout , Nanog Homeobox Protein , Protein Conformation , Proteomics , Tumor Suppressor Protein p53/metabolism
13.
Cancer Metab ; 1(1): 9, 2013 Feb 04.
Article in English | MEDLINE | ID: mdl-24280180

ABSTRACT

BACKGROUND: The p53 tumor suppressor protein is a transcription factor that initiates transcriptional programs aimed at inhibiting carcinogenesis. p53 represses metabolic pathways that support tumor development (such as glycolysis and the pentose phosphate pathway (PPP)) and enhances metabolic pathways that are considered counter-tumorigenic such as fatty acid oxidation. FINDINGS: In an attempt to comprehensively define metabolic pathways regulated by p53, we performed two consecutive high-throughput analyses in human liver-derived cells with varying p53 statuses. A gene expression microarray screen followed by constraint-based modeling (CBM) predicting metabolic changes imposed by the transcriptomic changes suggested a role for p53 in enhancing gluconeogenesis (de novo synthesis of glucose). Examining glucogenic gene expression revealed a p53-dependent induction of genes involved in both gluconeogenesis (G6PC, PCK2) and in supplying glucogenic precursors (glycerol kinase (GK), aquaporin 3 (AQP3), aquaporin 9 (AQP9) and glutamic-oxaloacetic transaminase 1 (GOT1)). Accordingly, p53 augmented hepatic glucose production (HGP) in both human liver cells and primary mouse hepatocytes. CONCLUSIONS: These findings portray p53 as a novel regulator of glucose production. By facilitating glucose export, p53 may prevent it from being shunted to pro-cancerous pathways such as glycolysis and the PPP. Thus, our findings suggest a metabolic pathway through which p53 may inhibit tumorigenesis.

14.
PLoS One ; 8(4): e61353, 2013.
Article in English | MEDLINE | ID: mdl-23630584

ABSTRACT

Mutations in the p53 tumor suppressor protein are highly frequent in tumors and often endow cells with tumorigenic capacities. We sought to examine a possible role for mutant p53 in the cross-talk between cancer cells and their surrounding stroma, which is a crucial factor affecting tumor outcome. Here we present a novel model which enables individual monitoring of the response of cancer cells and stromal cells (fibroblasts) to co-culturing. We found that fibroblasts elicit the interferon beta (IFNß) pathway when in contact with cancer cells, thereby inhibiting their migration. Mutant p53 in the tumor was able to alleviate this response via SOCS1 mediated inhibition of STAT1 phosphorylation. IFNß on the other hand, reduced mutant p53 RNA levels by restricting its RNA stabilizer, WIG1. These data underscore mutant p53 oncogenic properties in the context of the tumor microenvironment and suggest that mutant p53 positive cancer patients might benefit from IFNß treatment.


Subject(s)
Fibroblasts/metabolism , Interferon-beta/metabolism , Tumor Microenvironment , Tumor Suppressor Protein p53/genetics , Carrier Proteins/metabolism , Cell Line, Tumor , Cell Movement , Coculture Techniques , Humans , Lung Neoplasms , Mutation , Nuclear Proteins/metabolism , Phosphorylation , Protein Processing, Post-Translational , RNA Stability , RNA-Binding Proteins , STAT1 Transcription Factor/metabolism , Suppressor of Cytokine Signaling 1 Protein , Suppressor of Cytokine Signaling Proteins/metabolism , Tumor Escape , Tumor Suppressor Protein p53/metabolism , Up-Regulation
15.
Carcinogenesis ; 34(1): 190-8, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23054612

ABSTRACT

Cytochrome P450 (P450) enzymes are abundantly expressed in the human liver where they hydroxylate organic substrates. In a microarray screen performed in human liver cells, we found a group of eleven P450 genes whose expression was induced by p53 (CYP3A4, CYP3A43, CYP3A5, CYP3A7, CYP4F2, CYP4F3, CYP4F11, CYP4F12, CYP19A1, CYP21A2 and CYP24A1). The mode of regulation of four representative genes (CYP3A4, CYP3A7, CYP4F2 and CYP4F3) was further characterized. The genes were induced in a p53-dependent manner in HepG2 and Huh6 cells (both are cancer-derived human liver cells) and in primary liver cells isolated from human donors. Furthermore, p53 was found to bind to p53-responsive elements in the genes' DNA-regulatory regions and to enhance their transcription in a reporter gene assay. Importantly, when p53 was activated following the administration of either of three different anticancer chemotherapeutic agents (cisplatin, etoposide or doxorubicin), it was able to induce CYP3A genes, which are the main factors in systemic clearance of these agents. Finally, the p53-dependent induction of P450 genes following either Nutlin or chemotherapy treatment led to enhanced P450 enzymatic activity. Thus, in addition to the well-established role of p53 at the tumor site, our data unravels a novel function of hepatic p53 in inducing P450 enzymes and position p53 as a major factor in the hepatic response to xenobiotic and metabolic signals. Importantly, this study reveals a novel pathway for the induction of CYP3As by their substrates through p53, warranting the need for careful consideration when designing systemically administered chemotherapeutic regimens.


Subject(s)
Antineoplastic Agents/pharmacology , Cytochrome P-450 CYP3A/metabolism , Tumor Suppressor Protein p53/metabolism , Base Sequence , Cell Line , Chromatin Immunoprecipitation , DNA , Humans , Lipid Metabolism/genetics , Real-Time Polymerase Chain Reaction
16.
Nat Genet ; 44(11): 1207-14, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23064413

ABSTRACT

DNA methylation has been comprehensively profiled in normal and cancer cells, but the dynamics that form, maintain and reprogram differentially methylated regions remain enigmatic. Here, we show that methylation patterns within populations of cells from individual somatic tissues are heterogeneous and polymorphic. Using in vitro evolution of immortalized fibroblasts for over 300 generations, we track the dynamics of polymorphic methylation at regions developing significant differential methylation on average. The data indicate that changes in population-averaged methylation occur through a stochastic process that generates a stream of local and uncorrelated methylation aberrations. Despite the stochastic nature of the process, nearly deterministic epigenetic remodeling emerges on average at loci that lose or gain resistance to methylation accumulation. Changes in the susceptibility to methylation accumulation are correlated with changes in histone modification and CTCF occupancy. Characterizing epigenomic polymorphism within cell populations is therefore critical to understanding methylation dynamics in normal and cancer cells.


Subject(s)
DNA Methylation/genetics , Epigenesis, Genetic , Repressor Proteins/genetics , Base Sequence , CCCTC-Binding Factor , CpG Islands , Fibroblasts , Gene Expression Regulation, Neoplastic , Humans , Molecular Sequence Data , Polymorphism, Genetic , Repressor Proteins/metabolism , Sequence Analysis, DNA , Tumor Cells, Cultured
17.
J Cell Sci ; 125(Pt 22): 5578-86, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22899716

ABSTRACT

Uncontrolled accumulation of reactive oxygen species (ROS) causes oxidative stress and induces harmful effects. Both high ROS levels and p53 mutations are frequent in human cancer. Mutant p53 forms are known to actively promote malignant growth. However, no mechanistic details are known about the contribution of mutant p53 to excessive ROS accumulation in cancer cells. Herein, we examine the effect of p53(R273H), a commonly occurring mutated p53 form, on the expression of phase 2 ROS-detoxifying enzymes and on the ability of cells to readopt a reducing environment after exposure to oxidative stress. Our data suggest that p53(R273H) mutant interferes with the normal response of human cells to oxidative stress. We show here that, upon oxidative stress, mutant p53(R273H) attenuates the activation and function of NF-E2-related factor 2 (NRF2), a transcription factor that induces the antioxidant response. This effect of mutant p53 is manifested by decreased expression of phase 2 detoxifying enzymes NQO1 and HO-1 and high ROS levels. These findings were observed in several human cancer cell lines, highlighting the general nature of this phenomenon. The failure of p53(R273H) mutant-expressing cells to restore a reducing oxidative environment was accompanied by increased survival, a known consequence of mutant p53 expression. These activities are attributable to mutant p53(R273H) gain of function and might underlie its well-documented oncogenic nature in human cancer.


Subject(s)
Amino Acid Substitution/genetics , Colonic Neoplasms/enzymology , Colonic Neoplasms/pathology , Metabolic Detoxication, Phase II/genetics , Mutant Proteins/metabolism , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/genetics , Apoptosis/drug effects , Apoptosis/genetics , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/genetics , Gene Knockdown Techniques , HCT116 Cells , Heme Oxygenase-1/metabolism , Humans , Maleates/pharmacology , Mutation/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Oxidative Stress/genetics , RNA, Small Interfering/metabolism , Superoxides/metabolism , Tumor Suppressor Protein p53/metabolism
18.
J Cell Sci ; 125(Pt 13): 3144-52, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22427690

ABSTRACT

Concomitant expression of mutant p53 and oncogenic Ras, leading to cellular transformation, is well documented. However, the mechanisms by which the various mutant p53 categories cooperate with Ras remain largely obscure. From this study we suggest that different mutant p53 categories cooperate with H-Ras in different ways to induce a unique expression pattern of a cancer-related gene signature (CGS). The DNA-contact p53 mutants (p53(R248Q) and p53(R273H)) exhibited the highest level of CGS expression by cooperating with NFκB. Furthermore, the Zn(+2) region conformational p53 mutants (p53(R175H) and p53(H179R)) induced the CGS by elevating H-Ras activity. This elevation in H-Ras activity stemmed from a perturbed function of the p53 transcription target gene, BTG2. By contrast, the L3 loop region conformational mutant (p53(G245S)) did not affect CGS expression. Our findings were further corroborated in human tumor-derived cell lines expressing Ras and the aforementioned mutated p53 proteins. These data might assist in future tailor-made therapy targeting the mutant p53-Ras axis in cancer.


Subject(s)
Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Genes, ras , Transcriptome , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Enzyme Activation , Humans , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Mutation , NF-kappa B/genetics , NF-kappa B/metabolism , Protein Interaction Mapping , Transcription, Genetic , Transfection , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Zinc/metabolism
19.
J Hepatol ; 56(3): 656-62, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22037227

ABSTRACT

BACKGROUND & AIMS: In this study we aimed at characterizing the regulation of hepatic metabolic pathways by the p53 transcription factor. METHODS: Analysis of gene expression following alteration of p53 status in several human- and mouse-derived cells using microarray analysis, quantitative real-time PCR, chromatin immunoprecipitation, and reporter gene assays. A functional assay was performed to determine lipid transfer activity. RESULTS: We identified a novel role for the p53 protein in regulating lipid and lipoprotein metabolism, a process not yet conceived as related to p53, which is known mainly for its tumor suppressive functions. We revealed a group of 341 genes whose expression was induced by p53 in the liver-derived cell line HepG2. Twenty of these genes encode proteins involved in many aspects of lipid homeostasis. The mode of regulation of three representative genes (Pltp, Abca12, and Cel) was further characterized. In addition to HepG2, the genes were induced following activation of p53 in human primary hepatic cells isolated from liver donors. p53-dependent regulation of these genes was evident in other cell types namely Hep3B cells, mouse hepatocytes, and fibroblasts. Furthermore, p53 was found to bind to the genes' promoters in designated p53 responsive elements and thereby increase transcription. Importantly, p53 augmented the activity of secreted PLTP, which plays a major role in lipoprotein biology and atherosclerosis pathology. CONCLUSIONS: These findings expose another facet of p53 functions unrelated to tumor suppression and render it a novel regulator of hepatic lipid metabolism and consequently of systemic lipid homeostasis and atherosclerosis development.


Subject(s)
Lipid Metabolism/physiology , Liver/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Atherosclerosis/metabolism , Fibroblasts/cytology , Fibroblasts/physiology , Gene Expression Profiling , Hep G2 Cells , Hepatocytes/cytology , Hepatocytes/physiology , Homeostasis/physiology , Humans , Lipase/genetics , Lipase/metabolism , Liver/cytology , Mice , Microarray Analysis , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/metabolism
20.
Carcinogenesis ; 32(12): 1749-57, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21900211

ABSTRACT

Compelling evidences have rendered the tumor microenvironment a crucial determinant in cancer outcome. Activating transcription factor 3 (ATF3), a stress response transcription factor, is known to have a dichotomous role in tumor cells, acting either as a tumor suppressor or an oncogene in a context-dependent manner. However, its expression and possible role in the tumor microenvironment are hitherto unknown. Here we show that ATF3 is upregulated in the stromal compartment of several types of cancer. Accordingly, Cancer-associated fibroblasts (CAFs) ectopically expressing ATF3 proliferated faster as indicated by increased colony-forming capacity and promoted the growth of adjacent tumor cells when co-injected into nude mice. Utilizing a genome-wide profiling approach, we unraveled a robust gene expression program induced by ATF3 in CAFs. Focusing on a specific subset of genes, we found that the ability of stromal ATF3 to promote cancer progression is mediated by transcriptional repression of CLDN1 and induction of CXCL12 and RGS4. In addition, regulation of LIF, CLDN1, SERPINE2, HSD17B2, ITGA7 and PODXL by ATF3 mediated the increased proliferation capacity of CAFs. In sum, our findings implicate ATF3 as a novel stromal tumor promoter and suggest that targeting ATF3 pathway might be beneficial for anticancer therapy.


Subject(s)
Activating Transcription Factor 3/physiology , Neoplasms/genetics , Transcription, Genetic/physiology , Blotting, Western , Cell Compartmentation , Cell Line, Tumor , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/metabolism , Neoplasms/pathology , Real-Time Polymerase Chain Reaction , Stromal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL