Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 17(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39203238

ABSTRACT

This work covers the formation of a passive state for two different alloys used in the aeronautical industry. The aim of this study is to investigate the effectiveness of passivation treatments on 17-7PH and 410 SS (stainless steel) samples, specifically when performed with citric and nitric acid solutions at 49 °C using an immersion time of 90 min and subsequent exposure in 3.5 wt.% NaCl solution. Employing the cyclic potentiodynamic polarization (CPP) technique, the corrosion properties of the passivated material were evaluated according to the ASTM G65-11 standard. A microstructural analysis was performed using scanning electron microscopy (SEM). The passivated layer was characterized via X-ray photoelectron spectroscopy. In the results, the CPP curves showed positive hysteresis, indicating pitting localized corrosion, and 17-7PH steel passivated at 49 °C for 90 min in citric acid exhibited lower corrosion rate values equivalent to ×10-3 mm/year.

2.
Materials (Basel) ; 17(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39063712

ABSTRACT

The effect of temperature on the localized corrosion resistance and passive film characteristics of laser powder-bed fusion (LPBF) 316L (UNS S31603) was studied in a buffered 3.5 wt% NaCl solution at 25, 50, and 75 °C. DC techniques such as cyclic potentiodynamic polarization showed lower passive current densities, high breakdown potentials, and a higher resistance to initial breakdown compared with wrought 316L samples at all temperatures. However, LPBF 316L was more susceptible to metastable pitting at potentials before film breakdown and higher damage accumulation post film breakdown. AC techniques, such as Mott-Schottky analysis and electrochemical impedance spectroscopy, showed that the formed passive film was more robust on the LPBF 316L samples at all temperatures, accounting for the higher initial resistance to pitting. However, with increasing temperatures, the film formed had an increasing concentration of defect density. Passive compositions at the various test temperatures studied using X-ray photoelectron spectroscopy (XPS) showed that the LPBF samples showed higher amounts of Cr and Fe oxides and hydroxides compared with the wrought samples, which made the passive films on the LPBF samples more compact and protective. Investigation of the pits formed on the LPBF showed the preferential regions of attack were the melt-pool boundaries and cell interiors due to their being depleted of Cr and Mo when compared with the boundaries and matrix.

SELECTION OF CITATIONS
SEARCH DETAIL