Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Microorg Control ; 29(2): 63-73, 2024.
Article in English | MEDLINE | ID: mdl-38880618

ABSTRACT

Cutibacterium acnes is an opportunistic pathogen recognized as a contributing factor to acne vulgaris. The accumulation of keratin and sebum plugs in hair follicles facilitates C. acnes proliferation, leading to inflammatory acne. Although numerous antimicrobial cosmetic products for acne-prone skin are available, their efficacy is commonly evaluated against planktonic cells of C. acnes. Limited research has assessed the antimicrobial effects on microorganisms within keratin and sebum plugs. This study investigates whether an antibacterial toner can penetrate keratin and sebum plugs, exhibiting bactericidal effects against C. acnes. Scanning electron microscopy and next-generation sequencing analysis of the keratin and sebum plug suggest that C. acnes proliferate within the plug, predominantly in a biofilm-like morphology. To clarify the potential bactericidal effect of the antibacterial toner against C. acnes inside keratin and sebum plugs, we immersed the plugs in the toner, stained them with LIVE/DEAD BacLight Bacterial Viability Kit to visualize microorganism viability, and observed them using confocal laser scanning microscopy. Results indicate that most microorganisms in the plugs were killed by the antibacterial toner. To quantitatively evaluate the bactericidal efficacy of the toner against C. acnes within keratin and sebum, we immersed an artificial plug with inoculated C. acnes type strain and an isolate collected from acne-prone skin into the toner and obtained viable cell counts. The number of the type strain and the isolate inside the artificial plug decreased by over 2.2 log and 1.2 log, respectively, showing that the antibacterial toner exhibits bactericidal effects against C. acnes via keratin and sebum plug penetration.


Subject(s)
Acne Vulgaris , Anti-Bacterial Agents , Keratins , Sebum , Sebum/metabolism , Anti-Bacterial Agents/pharmacology , Humans , Keratins/metabolism , Acne Vulgaris/microbiology , Acne Vulgaris/drug therapy , Biofilms/drug effects , Microbial Viability/drug effects , Propionibacteriaceae/drug effects , Propionibacteriaceae/metabolism , Propionibacteriaceae/genetics , Propionibacterium acnes/drug effects , Propionibacterium acnes/metabolism , Hair Follicle/microbiology , Hair Follicle/metabolism , Microscopy, Electron, Scanning
2.
J Microorg Control ; 29(1): 27-31, 2024.
Article in English | MEDLINE | ID: mdl-38508759

ABSTRACT

Cutibacterium acnes is an opportunistic pathogen in acne vulgaris. C. acnes produces autoinducer-2 (AI-2), a signaling molecule used for communication known as quorum sensing (QS). In C. acnes, QS reportedly upregulates biofilm formation leading to resistance against bactericidal agents. In this study, we analyzed how heparinoid affected QS and biofilm formation of the opportunistic pathogen C. acnes. We also verified whether heparinoid would suppress biofilm formation and enhance the efficacy of the bactericidal agent 4-isopropyl-3-methylphenol (IPMP) against C. acnes biofilms. We ran an AI-2 bioassay using Vibrio harveyi ATCC BBA-1121. Heparinoid exhibited inhibitory activity against AI-2 at concentrations of 0.003-0.005%, suggesting an AI-2 analog-derived or C. acnes culture supernatant-derived inhibition of the AI-2 activity. To evaluate how heparinoid suppresses biofilm formation in C. acnes, we completed a biofilm assay in 96-well plates. We also evaluated the bactericidal activity of IPMP against the C. acnes biofilm prepared with or without heparinoid. Heparinoid inhibited C. acnes biofilm formation and IPMP bactericidal efficacy increased upon heparinoid-mediated suppression of biofilm formation. In this study, we clarified that heparinoid inhibits the AI-2-mediated QS of C. acnes, thereby suppressing biofilm formation and increasing IPMP bactericidal efficacy, potentially suppressing acne vulgaris.


Subject(s)
Acne Vulgaris , Heparinoids , Homoserine/analogs & derivatives , Lactones , Humans , Quorum Sensing , Heparinoids/pharmacology , Biofilms , Anti-Bacterial Agents/pharmacology , Acne Vulgaris/drug therapy
3.
Biosci Biotechnol Biochem ; 79(7): 1207-15, 2015.
Article in English | MEDLINE | ID: mdl-25707633

ABSTRACT

The bacterial community structure was compared between the third days', one week', and three weeks' biofilm samples from the surface of a household toilet bowl. It was found that the PCR-DGGE band pattern of 16S rRNA gene was dramatically changed after the third day and was not further changed until three weeks. This result suggests that there are early and late colonizing bacterial groups. One of the early colonizers isolated from the third days' sample was Rhizobium sp. R8, a closest relative to Rhizobium giardinii, which exhibited the highest biofilm formation activity in an artificial urine condition. R8 produced extracellular polysaccharides containing galactose, glucose, and mannose at the molar ratio of 8:1:1, which were probably responsible for the biofilm formation. Its excelled biofilm formation and urease activities together with the lack of nodulation and nitrogen fixing genes in R8 suggest that this strain has been specifically adapted to urine condition in a toilet bowl.


Subject(s)
Rhizobium/isolation & purification , Rhizobium/physiology , Base Sequence , Biofilms , Household Articles/instrumentation , Microbial Consortia/genetics , Molecular Sequence Data , Phylogeny , Polysaccharides, Bacterial/metabolism , RNA, Ribosomal, 16S , Rhizobium/genetics , Urease/metabolism
4.
Biocontrol Sci ; 19(4): 173-9, 2014.
Article in English | MEDLINE | ID: mdl-25744213

ABSTRACT

We have previously conducted a microflora analysis and examined the biofilm-forming activity of bacteria isolated from toilet bowl biofilms. In the present investigation, to reveal the strain involved in the formation of black dirt in toilet bowls, we performed a microflora analysis of the bacteria and fungi isolated from the black dirt of toilet bowls at ten homes. Among samples from different isolation sites and sampling seasons, although a similar tendency was not seen in bacterial microflora, Exophiala sp. was detected in the fungal microflora from all samples of black dirt except for one, and constituted the major presence. By scanning electron microscope (SEM) analysis of the formed black dirt, SEM image at × 1,000 and × 5,000 magnification showed objects like hyphae and many bacteria adhering to them, respectively. Micro fourier transform infrared spectroscopy (micro FT-IR) and SEM with X-ray microanalysis (SEM-XMA) were used to investigate the components of black dirt. IR spectra of micro-FT-IR showed typical absorptions associated with amide compounds and protein, and the elements such as C, N, O, Na, Mg, Al, Si, P, S, K, and Ba were detected with SEM-XMA. These results showed that black dirt had living body ingredients. Furthermore, Exophiala sp. and Cladosporium sp. strains, which were observed at a high frequency, accumulated 2-hydroxyjuglone (2-HJ) and flaviolin as one of the intermediates in the melanin biosynthetic pathway by the addition of a melanin synthesis inhibitor (tricyclazole) at the time of cultivation. These results suggested strongly that the pigment of black dirt in toilet bowls was melanin produced by Exophiala sp. and Cladosporium sp. strains.


Subject(s)
Bacteria/isolation & purification , Biota , Complex Mixtures/chemistry , Environmental Microbiology , Fungi/isolation & purification , Household Articles , Bacteria/classification , Elements , Fungi/classification , Humans , Microscopy, Electron, Scanning , Organic Chemicals/analysis , Pigments, Biological/analysis , Spectroscopy, Fourier Transform Infrared , Surface Properties
5.
Biocontrol Sci ; 18(3): 129-35, 2013.
Article in English | MEDLINE | ID: mdl-24195153

ABSTRACT

To evaluate the sanitary conditions of toilets, the bacterial counts of the toilet bowl biofilms in 5 Kansai area and 11 Kansai and Kanto area homes in Japan were measured in winter and summer seasons, respectively. Isolates (128 strains) were identified by analyzing 16S ribosomal RNA sequences. The number of colonies and bacterial species from biofilms sampled in winter tended to be higher and lower, respectively, than those in summer. Moreover, the composition of bacterial communities in summer and winter samples differed considerably. In summer samples, biofilms in Kansai and Kanto areas were dominated by Blastomonas sp. and Mycobacterium sp., respectively. Methylobacterium sp. was detected in all toilet bowl biofilms except for one sample. Methylobacterium sp. constituted the major presence in biofilms along with Brevundimonas sp., Sphingomonas sp., and/or Pseudomonas sp. The composition ratio of the sum of their genera was 88.0 from 42.9% of the total bacterial flora. The biofilm formation abilities of 128 isolates were investigated, and results suggested that Methylobacterium sp. and Sphingomonas sp. were involved in biofilm formation in toilet bowls. The biofilm formation of a mixed bacteria system that included bacteria with the highest biofilm-forming ability in a winter sample was greater than mixture without such bacteria. This result suggests that isolates possessing a high biofilm-forming activity are involved in the biofilm formation in the actual toilet bowl. A bactericidal test against 25 strains indicated that the bactericidal activities of didecyldimethylammonium chloride (DDAC) tended to be higher than those of polyhexamethylene biguanide (PHMB) and N-benzyl-N,N-dimethyldodecylammonium chloride (ADBAC). In particular, DDAC showed high bactericidal activity against approximately 90% of tested strains under the 5 h treatment.


Subject(s)
Bacteria/drug effects , Bacterial Physiological Phenomena , Biofilms/growth & development , Disinfectants/pharmacology , Environmental Microbiology , Bacteria/isolation & purification , Biguanides/pharmacology , Biota , Japan , Quaternary Ammonium Compounds/pharmacology , Seasons
6.
Biocontrol Sci ; 17(4): 175-81, 2012.
Article in English | MEDLINE | ID: mdl-23269219

ABSTRACT

DDAC is an effective disinfectant used in the medical and food industries and the environmental field. However, skin irritation in humans occurs at high DDAC concentrations. In this study, we analyzed the combined effect of a low concentration (0.3 ppm) of DDAC and low concentrations (6, 8, and 10 ppm) of 37 products of nonionic surfactants on the bactericidal activity against S. aureus. No bactericidal activity was found at 0.3 ppm DDAC alone. Results showed that a combination of a low concentration of DDAC (0.3 ppm) and some nonionic surfactants tested (synergistic effect of five products ≥ 2.0) improved the bactericidal activity of DDAC. Synergistic effects of DDAC and some nonionic surfactants are desirable and were suggested to occur as follows. Test surfactants acted against the cell walls of S. aureus, which allowed DDAC to act easily on the lipid double membrane in the cell wall, thereby increasing the bactericidal activity of DDAC. In the present study, synergistic effects of a low concentration of DDAC and some nonionic surfactants were observed, a phenomenon that may be considerable value in future developments.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Synergism , Quaternary Ammonium Compounds/pharmacology , Staphylococcus aureus/drug effects , Surface-Active Agents/pharmacology , Cell Wall/drug effects , Humans , Microbial Viability/drug effects , Staphylococcus aureus/physiology
7.
FEBS Lett ; 566(1-3): 311-5, 2004 May 21.
Article in English | MEDLINE | ID: mdl-15147915

ABSTRACT

We have reported that human protein disulfide isomerase-related protein (hPDIR) has isomerase and chaperone activities that are lower than those of the human protein disulfide isomerase (hPDI), and that the b domain of hPDIR is critical for its chaperone activity [J. Biol. Chem. 279 (2004) 4604]. To investigate the basis of the differences between hPDI and hPDIR, and to determine the functions of each hPDIR domain in detail, we constructed several hPDIR domain mutants. Interestingly, when the b domain of hPDIR was replaced with the b' domain of hPDI, a dramatic increase in chaperone activity that was close to that of hPDI itself was observed. However, this mutant showed decreased oxidative refolding of alpha1-antitrypsin. The replacement of the b domain of hPDIR with the c domain of hPDI also increased its chaperone activity. These observations suggest that putative peptide-binding sites of hPDI determine both its chaperone activity and its substrate specificity.


Subject(s)
Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Protein Disulfide-Isomerases/chemistry , Protein Disulfide-Isomerases/metabolism , Proteins/chemistry , Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Molecular Chaperones/genetics , Molecular Sequence Data , Mutation , Oxidation-Reduction , Protein Disulfide-Isomerases/genetics , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrometry, Fluorescence
8.
J Biol Chem ; 279(6): 4604-11, 2004 Feb 06.
Article in English | MEDLINE | ID: mdl-14627699

ABSTRACT

Human protein-disulfide isomerase (hPDI)-related protein (hPDIR), which we previously cloned from a human placental cDNA library (Hayano, T., and Kikuchi, M. (1995) FEBS Lett. 372, 210-214), and its mutants were expressed in the Escherichia coli pET system and purified by sequential nickel affinity resin chromatography. Three thioredoxin motifs (CXXC) of purified hPDIR were found to contribute to its isomerase activity with a rank order of CGHC > CPHC > CSMC, although both the isomerase and chaperone activities of this protein were lower than those of hPDI. Screening for hPDIR-binding proteins using a T7 phage display system revealed that alpha1-antitrypsin binds to hPDIR. Surface plasmon resonance experiments demonstrated that alpha1-antitrypsin interacts with hPDIR, but not with hPDI or human P5 (hP5). Interestingly, the rate of oxidative refolding of alpha1-antitrypsin with hPDIR was much higher than with hPDI or hP5. Thus, the substrate specificity of hPDIR differed from that associated with isomerase activity, and the contribution of the CSMC motif to the oxidative refolding of alpha1-antitrypsin was the most definite of the three (CSMC, CGHC, CPHC). Substitution of SM and PH in the CXXC motifs with GH increased isomerase activity and decreased oxidative refolding. In contrast, substitution of GH and PH with SM decreased isomerase activity and increased oxidative refolding. Because CXXC motif mutants lacking isomerase activity retain chaperone activity for the substrate rhodanese, it is clear that, similar to PDI and hP5, the isomerase and chaperone activities of hPDIR are independent. These results suggest that the central dipeptide of the CXXC motif is critical for both redox activity and substrate specificity.


Subject(s)
Proteins/chemistry , Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Base Sequence , DNA, Complementary/genetics , Humans , In Vitro Techniques , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Mutagenesis, Site-Directed , Oxidation-Reduction , Protein Binding , Protein Disulfide-Isomerases/metabolism , Protein Folding , Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , alpha 1-Antitrypsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...