Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(28): 34272-34289, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37415272

ABSTRACT

Dye/salt separation in textile wastewater is of great importance. Membrane filtration technology is an environmentally friendly and effective approach to solve this issue. In this study, a thin-film composite membrane with a tannic acid (TA)-modified carboxylic multiwalled carbon nanotube (MWCNT) interlayer (M-TA) was prepared by interfacial polymerization with amino-functionalized graphene quantum dots (NGQDs) acting as aqueous monomers. The addition of the M-TA interlayer favored the formation of a thinner, more hydrophilic, and smoother selective skin layer for the composite membrane. The pure water permeability of the M-TA-NGQDs membrane was ∼9.32 L m-2 h-1 bar-1, which was higher than that of the NGQDs membrane without the interlayer. Meanwhile, the M-TA-NGQDs membrane presented better methyl orange (MO) rejection (97.79%) than the NGQDs membrane (87.51%). The optimal M-TA-NGQDs membrane exhibited excellent dye rejection (Congo red (CR): 99.61%; brilliant green (BG): 96.04%) and low salt rejection (NaCl < 15%). Noticeably, the M-TA-NGQDs membrane displayed effective selective separation performance (CR and BG > 99%) for dye/NaCl mixed solutions even at a high NaCl concentration of 50,000 mg/L. Furthermore, the M-TA-NGQDs membrane presented high water permeability recovery ratio values (91.02-98.20%). Importantly, the M-TA-NGQDs membrane showed excellent chemical stability (acid/alkali resistance). Generally, the fabricated M-TA-NGQDs membrane exhibited a great prospect for applications in dye wastewater treatment and water recycling, especially for the effective selective separation of dye/salt mixtures for high-salinity textile dyeing wastewater.

2.
ACS Appl Mater Interfaces ; 15(21): 25633-25649, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37198933

ABSTRACT

A nanofiltration membrane functionalized with metal-organic frameworks (MOFs) is promising to enhance micropollutant removal and realize wastewater reclamation. However, the current MOF-based nanofiltration membranes still suffer from severe fouling problems with an indefinable mechanism when used for antibiotic wastewater treatment. Hence, we report a nature-inspired MOF-based thin-film nanocomposite (TFN-CU) membrane to explore its rejection and antifouling behavior. Compared with unmodified membranes, the optimal TFN-CU5 membrane (with 5 mg·mL-1 C-UiO-66-NH2) had high water permeance (17.66 ± 1.19 L·m-2·h-1·bar-1), exceptional rejection for norfloxacin (97.92 ± 2.28%) and ofloxacin (95.36 ± 1.03%), and excellent long-term stability for treating synthetic secondary effluent with antibiotic rejection over 90%. Furthermore, it also showed superior antifouling capability (flux recovery up to 95.86 ± 1.28%) in bovine serum albumin (BSA) filtration after fouling cycles. Deriving from the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) approach, the antifouling mechanism between BSA and the TFN-CU5 membrane was mainly attributed to the inhibited adhesion forces because the growing short-ranged acid-base interaction caused repulsive interfacial interactions. It is further revealed that BSA fouling behavior is slightly retarded under an alkaline environment, while strengthened in the presence of calcium ions and humic acid, as well as high ionic strength. In short, the nature-inspired MOF-based TFN membranes possess exceptional rejection and organic fouling resistance, giving insights into the design of antifouling membranes during antibiotic wastewater reclamation.


Subject(s)
Metal-Organic Frameworks , Nanocomposites , Wastewater , Fluoroquinolones , Anti-Bacterial Agents/pharmacology , Membranes, Artificial
3.
J Colloid Interface Sci ; 641: 197-214, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36933467

ABSTRACT

For better sustainable resource recovery and elevating the separation efficiency of dye/salt mixture, it is essential to develop an appropriate nanofiltration membrane for the treatment of textile dyeing wastewater containing relatively smaller molecule dyes. In this work, a novel composite polyamide-polyester nanofiltration membrane was fabricated by tailoring amino functionalized quantum dots (NGQDs) and ß-cyclodextrin (CD). An in-situ interfacial polymerization occurred between the synthesized NGQDs-CD and trimesoyl chloride (TMC) on the modified multi-carbon nanotubes (MWCNTs) substrate. The incorporation of NGQDs significantly elevated the rejection (increased by âˆ¼ 45.08%) of the resultant membrane for small molecular dye (Methyl orange, MO) compared to the pristine CD membrane at low pressure (1.5 bar). The newly developed NGQDs-CD-MWCNTs membrane exhibited enhanced water permeability without compromising the dye rejection compared to the pure NGQDs membrane. The improved performance of the membrane was primarily attributed to the synergistic effect of functionalized NGQDs and the special hollow-bowl structure of CD. The optimal NGQDs-CD-MWCNTs-5 membrane expressed pure water permeability of 12.35 L m-2h-1 bar-1 at the pressure of 1.5 bar. Noteworthily, the NGQDs-CD-MWCNTs-5 membrane not only showed high rejection for the larger molecular dye of Congo Red (CR, 99.50%) but also for the smaller molecular dye of MO (96.01%) and Brilliant Green (BG, 95.60%) with the permeability of 8.81, 11.40, and 6.37 L m-2h-1 bar-1, respectively at low pressure (1.5 bar). The rejection of inorganic salts by the NGQDs-CD-MWCNTs-5 membrane was 17.20% for sodium chloride (NaCl), 14.30% for magnesium chloride (MgCl2), 24.63% for magnesium sulfate (MgSO4), and 54.58% for sodium sulfate (Na2SO4), respectively. The great rejection of dyes remained in the dye/salt binary mixed system (higher than 99% for BG and CR, <21% for NaCl). Importantly, the NGQDs-CD-MWCNTs-5 membrane exhibited favorable antifouling performance and potential good operation stability performance. Consequently, the fabricated NGQDs-CD-MWCNTs-5 membrane suggested a prospective application for the reuse of salts and water in textile wastewater treatment owing to the effective selective separation performance.

4.
ACS Appl Mater Interfaces ; 14(34): 38990-39003, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35976131

ABSTRACT

Thin-film nanocomposite (TFN) membranes with efficient molecular separation and organic solvent resistance are active in demand in wastewater treatment and resource reclamation, meeting the goal of emission peaks and carbon neutrality. In this work, a simple and rational design strategy has been employed to construct a sandwich-structured membrane for removing fluoroquinolone antibiotics and recycling organic solvents. The sandwich-structured membrane is composed of a porous substrate, a hydrophilic tannic acid-polyethyleneimine (TA-PEI) interlayer, and a polyamide (PA) selective layer decorated with metal-organic framework (PA-MOF). Results manifest that the hydrophilic TA-PEI interlayer played a bridging and gutter effect to achieve effective control in amide storage, amine diffusion, and nanomaterial downward leakage at the immiscible interface. The PA-MOF selective layer has been changed to a loosely crumpled surface, endowing functionalities on the sandwich-structured membrane that included limited pores, strengthened electronegativity, and stronger hydrophilicity. Thus, an enhanced water flux of 87.23 ± 7.43 LMH was achieved by the TFN-2 membrane (0.04 mg·mL-1 UiO-66-NH2), which is more than five times that of the thin-film composite membrane (17.46 ± 3.88 LMH). The rejection against norfloxacin, ciprofloxacin, and levofloxacin is 92.94 ± 1.60%, 94.62 ± 1.29%, and 96.92 ± 1.05%, respectively, effectively breaking through the "trade-off" effect between membrane permeability and rejection efficiency. Further antifouling results showed that the sandwich-structured membrane had lower flux decay ratios (3.36∼7.07%) and higher flux recovery ratios (93.40∼98.40%), as well as superior long-term stability after 30 days of filtration. Moreover, organic solvent resistance testing confirms that the sandwich-structured membrane maintained stable solvent flux and better recovery rates in ethanol, acetone, isopropanol, and N,N-dimethylformamide. Detailed nanofiltration mechanism studies revealed that these outstanding performances are based on the joint effect of the TA-PEI interlayer and PA-MOF selective layer, proposing a new perspective to break through the bottleneck of nanofiltration application in a complex environment.


Subject(s)
Anti-Bacterial Agents , Membranes, Artificial , Filtration/methods , Metal-Organic Frameworks , Nylons/chemistry , Phthalic Acids , Solvents
5.
Environ Sci Pollut Res Int ; 29(3): 3540-3554, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34389955

ABSTRACT

The natural environment is a complex system, and there is never only one kind of nanomaterial entering the environment. However, many studies only considered the plant toxicity of one kind of nanomaterial and do not consider the influence of two or more kinds of nanomaterials on plant toxicity. Multi-walled carbon nanotubes (MWCNTs) and zinc oxide nanoparticles (ZnO NPs) are two common and widely used nanomaterials in water environment, so these two kinds of nanomaterials were chosen to explore the effects of their combined toxicity on cabbage. This study investigated the toxicity of MWCNTs combined with ZnO NPs on cabbage by measuring the length of roots and stems, chlorophyll content, oxidative stress, antioxidant enzyme activity, metal element content, and root scanning electron microscopy. The toxicity of single MWCNTs toward cabbage was attributed to direct oxidative damage, while the toxicity of single ZnO NPs toward cabbage was due to the high level of zinc concentration. Moreover, ZnO NPs (10 mg/L) ameliorated MWCNTs toxicity toward cabbage by improving the activity of antioxidant enzymes. ZnO NPs (50 and 100 mg/L) because of the high content of zinc disrupted the balance of other metals in the plant and increased the toxicity of MWCNTs. In conclusion, the combined toxicity of different concentrations and types of nanomaterials should be considered for a more accurate assessment of environmental risks.


Subject(s)
Brassica , Nanoparticles , Nanotubes, Carbon , Zinc Oxide , Antioxidants/metabolism , Brassica/metabolism , Nanotubes, Carbon/toxicity , Oxidative Stress , Zinc Oxide/toxicity
6.
Chemosphere ; 237: 124517, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31549644

ABSTRACT

The dye wastewater treatment by membrane separation technology has obtained extensive attention in recent years. Nevertheless, it was rare for research on the removal of differently charged mixed dyes. In this study, several UiO-66-NH2 composite membranes were prepared and optimization experiments were conducted. The performance of composite membranes were evaluated by the removal of cationic (Methylene blue, MB), neutral (Rhodamine B, RB), and anionic (Congo red, CR) dyes. The optimization results demonstrated that the UiO-66-NH2/graphene oxide (UNG) composite membrane (PUF/PDA/UNG) which was loaded on polyurethane foam modified with polydopamine (PUF/PDA) had the best properties. In filtration experiments, the solution pH exhibited greater effect on the removal efficiency of MB and CR than RB. When NaCl, KCl, CaCl2 and Na2SO4 coexisted in the dye solution, the removal efficiency of MB by PUF/PDA/UNG membrane were 96.62%, 98.17%, 86.39% and 99.34% respectively. The presence of humic acid showed slight inhibitory effect on the removal of MB by PUF/PDA/UNG membrane (71.93%). The experimental results for mixed dyes filtration showed that PUF/PDA/UNG membrane could effectively remove MB, RB and CR in binary (i.e., MB/RB and RB/CR) and ternary (i.e., MB/RB/CR) systems through secondary filtration. And PUF/PDA/UNG membrane could remove MB and CR simultaneously through one-time filtration in MB/CR binary system. The removal mechanism was mainly attributed to the aggregation of mixed dyes, electrostatic interaction between dye molecules and the membrane surface, and hydrogen bonding. All results suggested that the as-prepared PUF/PDA/UNG membrane have great potential in practical treatment of dye wastewater.


Subject(s)
Coloring Agents/chemistry , Graphite/chemistry , Waste Disposal, Fluid , Water Pollutants, Chemical/chemistry , Adsorption , Filtration , Indoles , Membranes , Methylene Blue , Polymers , Polyurethanes , Rhodamines , Wastewater
7.
Article in English | MEDLINE | ID: mdl-30935101

ABSTRACT

Soil contamination with petroleum hydrocarbons and heavy metals is a widespread environmental problem. In recent years, cyclodextrin has attracted research interest because of its special hole structure that can form inclusion complexes with certain small molecules. However, the solubility of ß-cyclodextrin (ß-CD) in water is low and it crystallizes easily, leading to its low utilization in practice. In this experiment, we connected ß-CD with glycine under alkaline conditions to prepare glycine-ß-cyclodextrin (G-ß-CD), which is water soluble, has stronger coordinating ability with heavy metals, and is more suitable for treating oil-contaminated soil. The results show that G-ß-CD provides better desorption of petroleum hydrocarbons and heavy metals in soils with low organic matter content (1%) and NaNO3 of 0.25 mol/L at 70 g/L G-ß-CD under mildly acidic (pH 5⁻6) conditions. The results indicate that petroleum hydrocarbons and heavy metals were removed simultaneously by means of pretreatment with G-ß-CD, and the results can provide a theoretical basis for remediation of petroleum-contaminated soil.


Subject(s)
Glycine/chemistry , Metals, Heavy/chemistry , Petroleum/analysis , Soil Pollutants/chemistry , beta-Cyclodextrins/chemistry , Hydrogen-Ion Concentration , Inactivation, Metabolic
8.
J Colloid Interface Sci ; 527: 267-279, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29800876

ABSTRACT

Treating dye wastewater by membrane filtration technology has received much attention from researchers all over the world, however, current studies mainly focused on the removal of singly charged dyes but actual wastewater usually contains dyes with different charges. In this study, the removal of neutral, cationic and anionic dyes in binary or ternary systems was conducted by using zirconium-based metal organic frameworks loaded on polyurethane foam (Zr-MOFs-PUF) membrane. The Zr-MOFs-PUF membrane was fabricated by an in-situ hydrothermal synthesis approach and a hot-pressing process. Neutrally charged Rhodamine B (RB), positively charged Methylene blue (MB), and negatively charged Congo red (CR) were chosen as model pollutants for investigating filtration performance of the membrane. The results of filtration experiments showed that the Zr-MOFs-PUF membrane could simultaneously remove RB, MB, and CR not only from their binary system including RB/MB, RB/CR, and MB/CR mixtures, but also from RB/MB/CR ternary system. The removal of dyes by Zr-MOFs-PUF membrane was mainly attributed to the electrostatic interactions, hydrogen bond interaction, and Lewis acid-base interactions between the membrane and dye molecules. The maximum removal efficiencies by Zr-MOFs-PUF membrane were 98.80% for RB at pH ≈ 7, 97.57% for MB at pH ≈ 9, and 87.39% for CR at pH ≈ 3. Additionally, when the NaCl concentration reached 0.5 mol/L in single dye solutions, the removal efficiencies of RB, MB, and CR by Zr-MOFs-PUF membrane were 93.08%, 79.52%, and 97.82%, respectively. All the results suggested that the as-prepared Zr-MOFs-PUF membrane has great potential in practical treatment of dye wastewater.

9.
Chemosphere ; 204: 378-389, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29674150

ABSTRACT

Here we demonstrated an alternative partial reduction graphene oxide/metal-organic frameworks nano-scale laminated membrane for dyes and heavy metal ions removal at low pressure. Compared with pure prGO membranes, the novel UiO-66-(COOH)2/prGO membranes with loose structure and excellent selective permeability demonstrated significant enhancements of permeation for low-pressure nanofiltration. The UiO-66-(COOH)2/prGO membranes possess more nanochannels structure, high surface charge and stability, which were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). The experiment result indicated that the flux of composite membranes for pure water was 20.0 ±â€¯2.5 Lm-2h-1bar-1, about 2.9 times higher than that (6.5 ±â€¯1.2 Lm-2h-1bar-1) of the pristine prGO membranes at the same prGO loading. The high rejection of UiO-66-(COOH)2/prGO membranes for organic dyes (98.2 ±â€¯1.7% for negatively charged congo red and 92.55 ±â€¯2.5% for positively charged methylene blue) were exhibited. Moreover, the rejection for heavy metal ions also can be efficiently improved up to 96.5-83.1% for Cu2+ and 92.6-80.4% for Cd2+, indicating the positive effect of the electrostatic interaction on the nanochannels for ions. Therefore, it is reasonable to believe that novel UiO-66-(COOH)2/prGO membranes have great potential application in water treatment.


Subject(s)
Filtration/methods , Graphite/chemistry , Metal-Organic Frameworks/chemistry , Nanoparticles/chemistry , Nanotechnology/methods , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Pressure , Water Pollutants, Chemical/chemistry
10.
Chemosphere ; 184: 347-357, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28605705

ABSTRACT

Nanotechnology has great potential in water purification. However, the limitations such as aggregation and toxicity of nanomaterials have blocked their practical application. In this work, a novel copper nanoparticles-decorated graphene sponge (Cu-GS) was synthesized using a facile hydrothermal method. Cu-GS consisting of three-dimensional (3D) porous graphene network and well-dispersed Cu nanoparticles exhibited high antibacterial efficiency against Esherichia coli when used as a bactericidal filter. The morphological changes determined by scanning electron microscope and fluorescence images measured by flow cytometry confirmed the involvement of membrane damage induced by Cu-GS in their antibacterial process. The oxidative ability of Cu-GS and intercellular reactive oxygen species (ROS) were also determined to elucidate the possible antibacterial mechanism of Cu-GS. Moreover, the concentration of released copper ions from Cu-GS was far below the drinking water standard, and the copper ions also have an effect on the antibacterial activity of Cu-GS. Results suggested that Cu-GS as a novel bactericidal filter possessed a potential application of water disinfection.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Graphite/chemistry , Metal Nanoparticles/chemistry , Water Purification/methods , Copper/chemistry , Disinfection , Nanotechnology/methods
11.
J Colloid Interface Sci ; 505: 67-78, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28570853

ABSTRACT

Polyurethane foam membrane filled with humic acid-chitosan crosslinked gels (HA-CS-PUF) for dye removal was prepared by soaking the foams into humic acid-chitosan (HA-CS) crosslinked gels and hot-pressing them into membranes. Scanning electron microscope, derivative thermogravimetry and X-ray photoelectron spectroscopy were used to characterize the HA-CS-PUF membrane. Results showed that the interaction of HA and CS was mainly through ionic cross-linking between carboxyl and protonated amino groups. Three types of dyes, including positively charged methylene blue (MB), neutrally charged rhodamine B (RB) and negatively charged methyl orange (MO), were used to test membranes properties through static adsorption and membrane filtration experiments. It revealed that adsorption process was better fitted with Pseudo-second-order and Freundlich model. In membrane filtration experiments, we found that the retention rates of membrane 1 (ratio of HA to CS was 0:1) to MO and RB were 99.7% and 65%, respectively, and nearly no retention to MB. While membrane 4 (ratio of HA to CS was 0.2:1) can retain 97.7% of MO, 71.6% of RB and 62.1% of MB. Based on the experimental results, membrane 1 possessed the ability of selectively separating MB from MO/MB and RB/MB solutions, and membrane 4 can simultaneously retain RB and MB from RB/MB solution.

12.
J Colloid Interface Sci ; 498: 229-238, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28340423

ABSTRACT

Carbon nanotubes (CNTs), usually with a superior affinity with organic chemicals, are expected to ultimately released to the environment through their manufacturing, usage, and eventual disposal, which will influence the mobility and environmental risk of nonsteroidal anti-inflammatory drugs (NSAIDs). In this study, batch and column experiments were performed to examine the effects of two kinds of multi-walled carbon nanotubes (MWCNTs: MWCNT2040, MWCNT0815) and one kind of single-walled carbon nanotubes (SWCNTs) on the environmental fate of two NSAIDs, paracetamol (PA) and diclofenac sodium (DS), in sediments. Impact ways of CNTs including addition in inflow and mixing with sediments were investigated. The adsorption capacity of NSAIDs on sediments increased with increasing CNTs/sediments ratios and in an order of MWCNT2040

Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Environmental Pollutants/chemistry , Geologic Sediments/chemistry , Nanotubes, Carbon/chemistry , Adsorption , Electric Impedance , Hydrogen-Ion Concentration , Particle Size , Porosity , Thermodynamics
13.
Chemosphere ; 177: 65-76, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28284117

ABSTRACT

Organochlorine pesticides (OCPs) in sediment were a potential damage for humans and ecosystems. The aim of this work was to determine the effectiveness of carbon materials remedy hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethanes (DDTs) in sediment. Two different carbon materials including activated carbon (AC) and multi-walled carbon nanotubes (MWCNTs) were used in the present research. Sediment treated with 2 wt% AC and MWCNTs after 150 d contact showed 97%, and 75% reduction for HCH, and 93% and 59% decrease for DDTs in aqueous equilibrium concentration, respectively. Similarly, the reduction efficiencies of DDT and HCH uptake by semipermeable membrane devices (SPMDs) treated with AC (MWCNTs) were 97% (75%) and 92% (63%), respectively under the identical conditions. Furthermore, for 2 wt% AC (MWCNTs) system, a reduction of XAD beads uptake up to 87% (52%) and 73% (67%) was obtained in HCH and DDT flux to overlying water in quiescent system. Adding MWCNTs to contaminated sediment did not significantly decrease aqueous equilibrium concentration and DDTs and HCH availability in SPMDs compared to AC treatment. A series of results indicated that AC had significantly higher remediation efficiency towards HCH and DDTs in sediment than MWCNTs. Additionally, the removal efficiencies of two organic pollutants improved with increasing material doses and contact times. The greater effectiveness of AC was attributed to its greater specific surface area, which was favorable for binding contaminants. These results highlighted the potential for using AC as in-situ sorbent amendments for sediment remediation.


Subject(s)
Charcoal/chemistry , Environmental Restoration and Remediation/methods , Hydrocarbons, Chlorinated/analysis , Nanotubes, Carbon/chemistry , Water Pollutants, Chemical/analysis , Adsorption , China , DDT/analysis , Geography , Geologic Sediments/chemistry , Hexachlorocyclohexane/analysis , Lakes/chemistry , Pesticides/analysis , Solubility , Water/chemistry
14.
Sci Total Environ ; 579: 283-291, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27889216

ABSTRACT

Organochlorine pesticides (OCPs) were largely sprayed on the floodplain soils before the project of Returning Farmland to Lake in China, which caused contamination of sediment in Dong-ting Lake with dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) and posed threats to human health and other organisms. In this study, single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) at different concentrations of 0.058, 0.145 and 0.29wt% were used to manage residual DDTs and HCHs in Dong-ting Lake sediment. The efficacy was assessed by DDTs and HCHs deriving from the aqueous equilibrium experiment and uptake in semipermeable membrane devices (SPMDs). Desorption experiment and the quiescent flux experiment were conducted as well. The results showed that DDTs and HCHs were released from sediment. The p, p'-DDT was desorbed less readily than its metabolites and similarly α-HCH was desorbed less easily than other HCH isomers from sediment. Carbon nanotubes had great effects on treating DDTs and HCHs. The effectiveness of carbon nanotube amendment was dependent on type, dose and sediment-sorbent contact time In addition, carbon nanotubes being sprinkled on the surface of sediment as a cap and being injected into sediment as a mixture were considered as two effective ways to prevent DDTs and HCHs being released from sediment. Carbon nanotubes can be potentially useful as sorbents in in-situ remediation.

15.
J Colloid Interface Sci ; 488: 26-38, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27821337

ABSTRACT

This paper reports the fabrication of melamine sponge decorated with silver nanoparticles-modified graphene (G/AgNPs-MS) for water disinfection. The G/AgNPs-MS composites with the high porosity and elasticity were used in an antibacterial process in which the composite was first immersed in bacterial suspension, and subsequently squeezed via hand compression. G/AgNPs-MS exhibited more excellent bactericidal activity against Escherichia coli and Staphylococcus aureus bacteria compared with melamine sponge (MS), melamine sponge decorated with graphene (G-MS), and melamine sponge decorated with silver nanoparticles (AgNPs-MS). The superior antibacterial effect was possibly ascribed to the coordination of graphene oxide (GO) and silver nanoparticles (Ag NPs). Compared to AgNPs-MS, G/AgNPs-MS displayed better stability with fewer Ag+ release. G/AgNPs-MS composites were highly reusable with no significant differences in the loss of bacterial viability over 12 operational cycles. The possible antibacterial mechanism of G/AgNPs-MS was also investigated. It was found that the destruction of bacterial membrane by G/AgNPs-MS played an important role in the bactericidal activity. The generation of intercellular ROS and scavenging assays confirmed the involvement of Ag+ and ROS in the antibacterial process of G/AgNPs-MS. All the results demonstrated that the prepared G/AgNPs-MS composites, as innovative antibacterial materials, showed a great potential for water disinfection.


Subject(s)
Anti-Bacterial Agents/pharmacology , Disinfection/methods , Silver/pharmacology , Triazines/pharmacology , Water Microbiology , Anti-Bacterial Agents/chemistry , Cell Membrane/chemistry , Cell Membrane/drug effects , Elasticity , Equipment Reuse , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli/metabolism , Graphite/chemistry , Graphite/pharmacology , Metal Nanoparticles , Microbial Sensitivity Tests , Nanocomposites/chemistry , Nanocomposites/ultrastructure , Oxides , Porosity , Reactive Oxygen Species/agonists , Reactive Oxygen Species/metabolism , Silver/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Staphylococcus aureus/metabolism , Triazines/chemistry , Water/chemistry
16.
J Hazard Mater ; 317: 416-429, 2016 Nov 05.
Article in English | MEDLINE | ID: mdl-27318738

ABSTRACT

The fabrication of montmorillonite (Mt) decorated with lysozyme-modified silver nanoparticles (Ag/lyz-Mt) was reported. The lysozyme (lyz) was served as both reducing and capping reagent. Coupling the bactericidal activity of the lyz with AgNPs, along with the high porous structure and large specific surface area of the Mt, prevented aggregation of AgNPs and promoted nanomaterial-bacteria interactions, resulting in a greatly enhanced bactericidal capability against both Gram positive and Gram negative bacteria. This paper systematically elucidated the bactericidal mechanisms of Ag/lyz-Mt. Direct contact between the Ag/lyz-Mt surface and the bacterial cell was essential to the disinfection. Physical disruption of bacterial membrane was considered to be one of the bactericidal mechanisms of Ag/lyz-Mt. Results revealed that Ag(+) was involved in the bactericidal activity of Ag/lyz-Mt via tests conducted using Ag(+) scavengers. A positive ROS (reactive oxygen species) scavenging test indirectly confirmed the involvement of ROS (O2(-), H2O2, and OH) in the bactericidal mechanism. Furthermore, the concentrations of individual ROS were quantified. Results showed that Ag/lyz-Mt nanomaterial could be a promising bactericide for water disinfection.


Subject(s)
Anti-Bacterial Agents/chemistry , Bentonite/chemistry , Disinfection/methods , Enzymes, Immobilized/chemistry , Metal Nanoparticles/chemistry , Muramidase/chemistry , Nanocomposites/chemistry , Silver/chemistry , Adsorption , Anti-Bacterial Agents/pharmacology , Enzymes, Immobilized/metabolism , Escherichia coli/drug effects , Muramidase/metabolism , Staphylococcus aureus/drug effects , Surface Properties
17.
J Colloid Interface Sci ; 471: 94-102, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-26994349

ABSTRACT

Silver nanoparticle-decorated magnetic graphene oxide (MGO-Ag) was synthesized by doping silver and Fe3O4 nanoparticles on the surface of GO, which was used as an antibacterial agent. MGO-Ag was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy dispersive X-ray (EDS), X-ray diffraction (XRD), Raman spectroscopy and magnetic property tests. It can be found that magnetic iron oxide nanoparticles and nano-Ag was well dispersed on graphene oxide; and MGO-Ag exhibited excellent antibacterial activity against Escherichia coli and Staphylococcus aureus. Several factors were investigated to study the antibacterial effect of MGO-Ag, such as temperature, time, pH and bacterial concentration. We also found that MGO-Ag maintained high inactivation rates after use six times and can be separated easily after antibacterial process. Moreover, the antibacterial mechanism is discussed and the synergistic effect of GO, Fe3O4 nanoparticles and nano-Ag accounted for high inactivation of MGO-Ag.


Subject(s)
Anti-Bacterial Agents , Escherichia coli/growth & development , Graphite/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Staphylococcus aureus/growth & development , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/ultrastructure
18.
Int J Biol Macromol ; 82: 702-10, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26582339

ABSTRACT

Magnetic chitosan-graphene oxide (MCGO) nanocomposite was prepared as a multi-functional nanomaterial for the applications of antibacterial and dye removal. The nanocomposite was characterized by scanning electronic microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FTIR). The antibacterial performance for MCGO against Escherichia coli was varied depending on the concentration of MCGO. SEM images of E. coli cells demonstrated that the antimicrobial performance of MCGO nanocomposite was possibly due to the damage of cell membrane. This work also explored MCGO's adsorption performance for methyl orange (MO). The experimental parameters including adsorbent mass, pH value, contact time and concentration of MO on the adsorption capacity were investigated. The maximum adsorption capacity of MCGO for MO was 398.08 mg/g. This study showed that the MCGO offered enormous potential applications for water treatment.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Chitosan/chemistry , Coloring Agents/chemistry , Graphite/chemistry , Magnetite Nanoparticles/chemistry , Nanocomposites/chemistry , Oxides/chemistry , Adsorption , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Membrane/drug effects , Escherichia coli/drug effects , Escherichia coli/ultrastructure , Hydrogen-Ion Concentration , Magnetite Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Nanocomposites/ultrastructure , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
19.
J Hazard Mater ; 276: 66-76, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24862470

ABSTRACT

The challenge to achieve efficient disinfection and microbial control without harmful disinfection byproducts calls for developing new technologies. Magnetic-graphene oxide (M-GO) with magnetic iron oxide nanoparticles well dispersed on graphene oxide (GO) nanosheets exerted excellent antibacterial activity against Escherichia coli. The antibacterial performance of M-GO was dependent on the concentration and the component mass ratio of M/GO. The synergetic antibacterial effect of M-GO was observed with M/GO mass ratio of 9.09. TEM images illustrated the interaction between E. coli cells and M-GO nanocomposites. M-GO nanomaterials were possible to deposit on or penetrate into cells leading to leakage of intercellular contents and loss of cell integrity. The inactivation mechanism of E. coli by M-GO was supposed to result from both the membrane stress and oxidation stress during the incubation period. M-GO with excellent antibacterial efficiency against E. coli and separation-convenient property from water could be potent bactericidal nanomaterials for water disinfection.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Ferric Compounds/pharmacology , Graphite/pharmacology , Nanocomposites , Water Microbiology , Anti-Bacterial Agents/chemistry , Escherichia coli/metabolism , Ferric Compounds/chemistry , Graphite/chemistry , Microscopy, Electron, Transmission , Spectrum Analysis, Raman
20.
Sci Total Environ ; 468-469: 1014-27, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24095965

ABSTRACT

Nowadays nanomaterials have been widely used to remove heavy metals from water/wastewater due to their large surface area and high reactivity. Humic acid (HA) and fulvic acid (FA) exist ubiquitously in aquatic environments and have a variety of functional groups which allow them to complex with metal ions and interact with nanomaterials. These interactions can not only alter the environmental behavior of nanomaterials, but also influence the removal and transportation of heavy metals by nanomaterials. Thus, the interactions and the underlying mechanisms involved warrant specific investigations. This review outlined the effects of HA/FA on the removal of heavy metals from aqueous solutions by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials. Moreover, mechanisms involved in the interactions were discussed and potential environmental implications of HA/FA to nanomaterials and heavy metals were evaluated.


Subject(s)
Benzopyrans/chemistry , Humic Substances , Metals, Heavy/chemistry , Nanostructures/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Metals, Heavy/analysis , Molecular Structure , Photochemistry , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...