Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Immunol ; 5(48)2020 06 19.
Article in English | MEDLINE | ID: mdl-32561560

ABSTRACT

Macrophages reside in the body cavities where they maintain serosal homeostasis and provide immune surveillance. Peritoneal macrophages are implicated in the etiology of pathologies including peritonitis, endometriosis, and metastatic cancer; thus, understanding the factors that govern their behavior is vital. Using a combination of fate mapping techniques, we have investigated the impact of sex and age on murine peritoneal macrophage differentiation, turnover, and function. We demonstrate that the sexually dimorphic replenishment of peritoneal macrophages from the bone marrow, which is high in males and very low in females, is driven by changes in the local microenvironment that arise upon sexual maturation. Population and single-cell RNA sequencing revealed marked dimorphisms in gene expression between male and female peritoneal macrophages that was, in part, explained by differences in composition of these populations. By estimating the time of residency of different subsets within the cavity and assessing development of dimorphisms with age and in monocytopenic Ccr2 -/- mice, we demonstrate that key sex-dependent features of peritoneal macrophages are a function of the differential rate of replenishment from the bone marrow, whereas others are reliant on local microenvironment signals. We demonstrate that the dimorphic turnover of peritoneal macrophages contributes to differences in the ability to protect against pneumococcal peritonitis between the sexes. These data highlight the importance of considering both sex and age in susceptibility to inflammatory and infectious diseases.


Subject(s)
Macrophages, Peritoneal/immunology , Sex Characteristics , Animals , Cell Differentiation/immunology , Female , Homeostasis/immunology , Male , Mice , Mice, Congenic , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Phenotype , RNA/genetics , RNA/immunology , Sequence Analysis, RNA , Single-Cell Analysis
2.
J Biol Chem ; 275(51): 40547-53, 2000 Dec 22.
Article in English | MEDLINE | ID: mdl-11006291

ABSTRACT

The double-stranded linear DNA of Bacillus subtilis phage O29 is replicated by a mechanism in which a terminal protein (TP) acts as a primer. The second 3'-terminal nucleotide of the template directs the incorporation of the 5'-terminal nucleotide into the TP, giving rise to the initiation complex TP-dAMP. Elongation then proceeds by a sliding-back mechanism in which the dAMP covalently linked to the TP pairs to the 3'-terminal nucleotide of the template strand to recover full-length DNA. We have studied the sequence requirements for efficient initiation of replication using mutated TP-free double-stranded DNA fragments. Efficient initiation only requires the terminal repetition 5'-AA. The 3'-terminal T, although not used as template, increases the affinity of DNA polymerase for the initiator nucleotide; in addition, although to a minor extent, the third 3'-terminal position also directs the formation of the initiation complex and modulates the initiation rate at the second position. Efficient elongation requires a previous sliding-back, demanding again a repetition of two nucleotides at the 3' end; if the sliding-back is prevented, a residual elongation can proceed directly from the second position or after jumping back from the third to the first position.


Subject(s)
Bacillus Phages/genetics , DNA Replication , DNA, Viral/biosynthesis , Bacillus subtilis/virology , DNA, Viral/genetics , Templates, Genetic
3.
J Biol Chem ; 275(19): 14678-83, 2000 May 12.
Article in English | MEDLINE | ID: mdl-10799555

ABSTRACT

The linear genome of Bacillus subtilis phage phi29 has a protein covalently linked to the 5' ends, called parental terminal protein (TP), and is replicated using a free TP as primer. The initiation of phage phi29 DNA replication requires the formation of a DNA polymerase/TP complex that recognizes the replication origins located at the genome ends. The DNA polymerase catalyzes the formation of the initiation complex TP-dAMP, and elongation proceeds coupled to strand displacement. The same mechanism is used by the related phage Nf. However, DNA polymerase and TP from phi29 do not initiate the replication of Nf TP-DNA. To address the question of the specificity of origin recognition, we took advantage of the initiation reaction enhancement in the presence of Mn(2+), allowing us to detect initiation activity in heterologous systems in which DNA polymerase, TP, and template TP-DNA are not from the same phage. Initiation was selectively stimulated when DNA polymerase and TP-DNA were from the same phage, strongly suggesting that specific recognition of origins is brought through an interaction between DNA polymerase and parental TP.


Subject(s)
DNA Replication , DNA-Directed DNA Polymerase/metabolism , Bacteriophages/genetics , Cloning, Molecular , DNA, Viral/genetics , DNA-Directed DNA Polymerase/genetics , Replication Origin
SELECTION OF CITATIONS
SEARCH DETAIL