Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Oral Investig ; 28(1): 25, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38147184

ABSTRACT

OBJECTIVE: To establish the possible relation between total caries (TC) and caries severity (CS) with the AMY1 gene copy number (AMY1GCN). MATERIALS AND METHODS: This was an observational, cross-sectional, population-based, and association study with 303 participants. Each participant underwent a complete anamnesis and stomatological check-up, and peripheral blood was obtained to extract gDNA. TC and CS were determined as the number of caries at the dental exploration and the number of dental surfaces affected by caries, respectively, and AMY1GCN was determined by qPCR. RESULTS: We found an elevated caries prevalence (92.7%); TC and CS were 8 ± 10 and 10 ± 13 (median ± IR). There were higher TC and CS in those participants with AMY1GCN above the mean value (0.02 and 0.01 p values, respectively). A positive correlation between TC and CS with AMY1GCN (0.11 and 0.125 r values, 0.03 and 0.01 p values, respectively) was found, in addition to an association between TC and CS with AMY1GCN (1.5 and 1.6 OR values, 0.48 and 0.26 p values, respectively). CONCLUSION: TC and CS were positively related to the AMY1GCN. CLINICAL RELEVANCE: Dental caries has a high prevalence and a multifactorial etiology and has been related to a genetic component. Indeed, the salivary enzyme alpha-amylase could play a significant role in caries susceptibility, considering that its codifying gene (AMY1) can show variation in its gene copy number. This can be considered an important factor for the development of caries at a genetic level.


Subject(s)
Dental Caries Susceptibility , Dental Caries , Salivary alpha-Amylases , Dental Caries/enzymology , Dental Caries/epidemiology , Dental Caries/genetics , Dental Caries/pathology , Salivary alpha-Amylases/genetics , Salivary alpha-Amylases/metabolism , Cross-Sectional Studies , Humans , Male , Female , Adolescent , Young Adult , Adult , Patient Acuity , Dental Caries Susceptibility/genetics , Prevalence
2.
J Anim Physiol Anim Nutr (Berl) ; 107(1): 62-76, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35253270

ABSTRACT

Probiotics are live microorganisms that confer health benefits to their animal host by balancing the composition of its gastrointestinal microbiota and modulating its immune response. In this work, we studied bacterial consortia isolated from the rumen of 28- and 42-day-old calves to select those showing probiotic capacity. Consortia were characterized and their growth dynamics were determined in several growth media. The number of viable bacteria was larger in the Man, Rogosa and Sharpe broth (MRS) than in nutritive medium A (MNA) and the largest was for A3D42. Antibiotic susceptibility of bacterial consortia in MRS was higher than in MNA and the most susceptible samples were A1D28 and A3D42. In turn, A3D42 showed the highest tolerance to bile salts in MRS and MNA. Moreover, all bacterial consortia showed optimal growth at pH 5, 5.5, 6 and 7 in both media, while their temperature tolerance was higher in MRS. The antagonistic activity of bacterial consortia in MNA was higher than in MRS with A2D42 showing the best antagonistic activity for Pseudomona aureginosa (ATCC 9027) and Staphylococcus aureus (ATCC 6538) in MNA. Additionally, A1D42 and A2D42 in MRS and A3D42 in MNA had significant adhesion to mucins, and A1D42 in MRS had the highest. Regarding their species composition, all bacterial consortia in MRS belonged to the phylum Firmicutes, and the class Bacilli and bacterial consortia in MNA belonged to three phyla; Proteobacteria, Firmicutes, and Bacteroidetes. Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus fermentum, and Lactobacillus johnsonii were identified in all bacterial consortia in MRS broth. Based on these results, A1D42 and A3D42 grown in MRS showed the best potential as probiotics for calves, which could result in health benefits and improve their production.


Subject(s)
Lacticaseibacillus casei , Lacticaseibacillus rhamnosus , Probiotics , Animals , Cattle , Rumen , Probiotics/pharmacology
3.
Animals (Basel) ; 12(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35203125

ABSTRACT

The addition of the antioxidant α-lipoic acid (ALA) to a balanced diet might be crucial for the prevention of comorbidities such as cardiovascular diseases, diabetes, and obesity. Due to its low half-life and instability under stomach-like conditions, α-lipoic acid was encapsulated into chitosan nanoparticles (Ch-NPs). The resulting chitosan nanoparticles containing 20% w/w ALA (Ch-ALA-NPs) with an average diameter of 44 nm demonstrated antioxidant activity and stability under stomach-like conditions for up to 3 h. Furthermore, fluorescent Ch-ALA-NPs were effectively internalized into 3T3-L1 fibroblasts and were able to cross the intestinal barrier, as evidenced by everted intestine in vitro experiments. Thus, chitosan-based nanoparticles seem to be an attractive administration method for antioxidants, or other sensible additives, in food.

4.
Vitam Horm ; 112: 179-207, 2020.
Article in English | MEDLINE | ID: mdl-32061341

ABSTRACT

AQP7 is the primary glycerol transporter in white (WAT) and brown (BAT) adipose tissues. There are immediate and quantitatively important actions of cortisone over the expression of AQP7 in murine and human adipocytes. Short-term response (minutes) of cortisone treatment result in an mRNA overexpression in white and brown differentiated adipocytes (between 1.5 and 6 folds). Conversely, long-term response (hours or days) result in decreased mRNA expression. The effects observed on AQP7 mRNA expression upon cortisone treatment in brown and white differentiated adipocytes are concordant with those observed for GK and HSD1B11.


Subject(s)
Adipose Tissue , Aquaporins , Glucocorticoids , Adipose Tissue/metabolism , Aquaporins/genetics , Aquaporins/metabolism , Gene Expression Regulation , Glucocorticoids/metabolism , Humans , RNA, Messenger/metabolism
5.
Adipocyte ; 5(3): 298-305, 2016.
Article in English | MEDLINE | ID: mdl-27617175

ABSTRACT

Adipose Tissue (AT) is a complex organ with a crucial regulatory role in energy metabolism and in the development of obesity and the Metabolic Syndrome (MS). Modified responses and the metabolism of hormones have been observed in visceral adiposity during obesity, specifically as related with cortisone. The objective of this study was to assess, in the 3T3-L1 adipocyte cell line, the short-term effect of cortisone on the expression of 11ß-Hydroxysteroid dehydrogenase 1 (Hsd1), which is responsible for activation of cortisone into cortisol, and for Aquaporin 7 (Aqp7), involved in glycerol transport through the cell membrane. Total RNA (tRNA) and complementary DNA (cDNA) were obtained from cell samples treated with cortisone (0.1, 1, and 10 µM) during different times (0, 5, 10, 15, and 20 min, and 48 h) to quantify the expression of the aforementioned genes by real time PCR employing MnSOD and Ppia as housekeeping genes. There was a time-dependent response of Aqp7, a dose-dependent response of Hsd1, and an increase observed in the expression of both genes during min 1 of treatment (5- and 6-fold, respectively), followed by a decrease during the following 5-10 min (P < 0.05). With the 1-µM cortisone treatment, both genes showed cubic tendencies in their expression; the Hsd1 tendency is described by the equation y = 0.18×(3)-1.65×(2)+3.59x+1.31, while the Aqp7 tendency is described by y = 0.33×(3)-2.67×(2)+4.93x+1.84. There are immediate and quantitatively important actions of cortisone on the expression of Aqp7 and Hsd1 in 3T3-L1 adipocytes.

6.
Cells Tissues Organs ; 201(1): 51-64, 2016.
Article in English | MEDLINE | ID: mdl-26565958

ABSTRACT

PURPOSE: We evaluated the effect of peroxisome proliferator-activated receptor (PPAR) agonists on the differentiation and metabolic features of bovine bone marrow-derived mesenchymal cells induced to adipogenic or myogenic lineages. METHODS: Cells isolated from 7-day-old calves were cultured in basal medium (BM). For adipogenic differentiation, cells were cultured for one passage in BM and then transferred to a medium supplemented with either rosiglitazone, telmisartan, sirtinol or conjugated c-9, t-11 linoleic acid; for myogenic differentiation, third-passage cells were added with either bezafibrate, telmisartan or sirtinol. The expression of PPARx03B3; (an adipogenic differentiation marker), myosin heavy chain (MyHC; a myogenic differentiation marker) and genes related to energy metabolism were measured by quantitative real-time PCR in a completely randomized design. RESULTS: For adipogenic differentiation, 20 µM telmisartan showed the highest PPARx03B3; expression (15.58 ± 0.62-fold, p < 0.0001), and differences in the expression of energy metabolism-related genes were found for hexokinase II, phosphofructokinase, adipose triglyceride lipase, acetyl-CoA carboxylase α(ACACα) and fatty acid synthase (p < 0.001), but not for ACACß (p = 0.4275). For myogenic differentiation, 200 µM bezafibrate showed the highest MyHC expression (73.98 ± 11.79-fold), and differences in the expression of all energy metabolism-related genes were found (p < 0.05). CONCLUSIONS: Adipocyte and myocyte differentiation are enhanced with telmisartan and bezafibrate, respectively, and energy uptake, storage and mobilization are improved with both.


Subject(s)
Adipogenesis/drug effects , Energy Metabolism/genetics , Mesenchymal Stem Cells/cytology , Muscle Development/drug effects , Peroxisome Proliferator-Activated Receptors/agonists , Adipocytes/cytology , Adipogenesis/physiology , Animals , Benzamides/pharmacology , Benzimidazoles/pharmacology , Benzoates/pharmacology , Bezafibrate/pharmacology , Bone Marrow Cells/cytology , Cattle , Cell Lineage/physiology , Energy Metabolism/physiology , Linoleic Acids/pharmacology , Muscle Development/physiology , Myosin Heavy Chains/biosynthesis , Naphthols/pharmacology , PPAR gamma/biosynthesis , Real-Time Polymerase Chain Reaction , Rosiglitazone , Telmisartan , Thiazolidinediones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL