Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 313
Filter
1.
medRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38946965

ABSTRACT

Severe acute malnutrition (SAM), defined anthropometrically as a weight-for-length z-score more than 3 standard deviations below the mean (WLZ<-3), affects 19 million children under 5-years-old worldwide. Complete anthropometric recovery after standard inventions is rare with children often left with moderate acute malnutrition (MAM; WLZ -2 to -3). Here we conduct a randomized controlled trial (RCT), involving 12-18-month-old Bangladeshi children from urban and rural sites, who after hospital-based treatment for SAM received a 3-month intervention with a microbiota-directed complementary food (MDCF-2) or a ready-to-use supplementary food (RUSF) as they transitioned to MAM. The rate of WLZ improvement was significantly greater with MDCF-2 than the more calorically-dense RUSF, as we observed in a previous RCT of Bangladeshi children with MAM without antecedent SAM. A correlated meta-analysis of aptamer-based measurements of 4,520 plasma proteins in this and the prior RCT revealed 215 proteins positively-associated with WLZ (prominently those involved in musculoskeletal and CNS development) and 44 negatively-associated proteins (related to immune activation), with a significant enrichment in levels of the positively WLZ-associated proteins in the MDCF-2 arm. Characterizing changes in 754 bacterial metagenome-assembled genomes in serially collected fecal samples disclosed the effects of acute rehabilitation for SAM on the microbiome, its transition as each child achieves a state of MAM, and how specific strains of Prevotella copri function at the intersection between MDCF-2 glycan metabolism and the rescue of growth faltering. These results provide a rationale for further testing the generalizability of the efficacy of MDCF and identify biomarkers for defining treatment responses.

2.
EBioMedicine ; 104: 105166, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833839

ABSTRACT

BACKGROUND: Globally, stunting affects ∼150 million children under five, while wasting affects nearly 50 million. Current interventions have had limited effectiveness in ameliorating long-term sequelae of undernutrition including stunting, cognitive deficits and immune dysfunction. Disrupted development of the gut microbiota has been linked to the pathogenesis of undernutrition, providing potentially new treatment approaches. METHODS: 124 Bangladeshi children with moderate acute malnutrition (MAM) enrolled (at 12-18 months) in a previously reported 3-month RCT of a microbiota-directed complementary food (MDCF-2) were followed for two years. Weight and length were monitored by anthropometry, the abundances of bacterial strains were assessed by quantifying metagenome-assembled genomes (MAGs) in serially collected fecal samples and levels of growth-associated proteins were measured in plasma. FINDINGS: Children who had received MDCF-2 were significantly less stunted during follow-up than those who received a standard ready-to-use supplementary food (RUSF) [linear mixed-effects model, ßtreatment group x study week (95% CI) = 0.002 (0.001, 0.003); P = 0.004]. They also had elevated fecal abundances of Agathobacter faecis, Blautia massiliensis, Lachnospira and Dialister, plus increased levels of a group of 37 plasma proteins (linear model; FDR-adjusted P < 0.1), including IGF-1, neurotrophin receptor NTRK2 and multiple proteins linked to musculoskeletal and CNS development, that persisted for 6-months post-intervention. INTERPRETATION: MDCF-2 treatment of Bangladeshi children with MAM, which produced significant improvements in wasting during intervention, also reduced stunting during follow-up. These results suggest that the effectiveness of supplementary foods for undernutrition may be improved by including ingredients that sponsor healthy microbiota-host co-development. FUNDING: This work was supported by the BMGF (Grants OPP1134649/INV-000247).


Subject(s)
Gastrointestinal Microbiome , Humans , Infant , Female , Male , Bangladesh/epidemiology , Feces/microbiology , Metagenome , Growth Disorders/etiology
3.
Sci Immunol ; 9(95): eadi5374, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758808

ABSTRACT

The gut microbiota and tumor-associated macrophages (TAMs) affect tumor responses to anti-programmed cell death protein 1 (PD-1) immune checkpoint blockade. Reprogramming TAM by either blocking or deleting the macrophage receptor triggering receptor on myeloid cells 2 (TREM2) attenuates tumor growth, and lack of functional TREM2 enhances tumor elimination by anti-PD-1. Here, we found that anti-PD-1 treatment combined with TREM2 deficiency in mice induces proinflammatory programs in intestinal macrophages and a concomitant expansion of Ruminococcus gnavus in the gut microbiota. Gavage of wild-type mice with R. gnavus enhanced anti-PD-1-mediated tumor elimination, recapitulating the effect occurring in the absence of TREM2. A proinflammatory intestinal environment coincided with expansion, increased circulation, and migration of TNF-producing CD4+ T cells to the tumor bed. Thus, TREM2 remotely controls anti-PD-1 immune checkpoint blockade through modulation of the intestinal immune environment and microbiota, with R. gnavus emerging as a potential probiotic agent for increasing responsiveness to anti-PD-1.


Subject(s)
Gastrointestinal Microbiome , Immunotherapy , Macrophages , Membrane Glycoproteins , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor , Receptors, Immunologic , Animals , Receptors, Immunologic/immunology , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics , Mice , Gastrointestinal Microbiome/immunology , Membrane Glycoproteins/immunology , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Immunotherapy/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Macrophages/immunology , Immune Checkpoint Inhibitors/pharmacology , Mice, Knockout , Female , Intestines/immunology
4.
mSphere ; 9(6): e0019624, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38742887

ABSTRACT

Environmental enteric dysfunction (EED) is a subclinical syndrome of altered small intestinal function postulated to be an important contributor to childhood undernutrition. The role of small intestinal bacterial communities in the pathophysiology of EED is poorly defined due to a paucity of studies where there has been a direct collection of small intestinal samples from undernourished children. Sixty-three members of a Pakistani cohort identified as being acutely malnourished between 3 and 6 months of age and whose wasting (weight-for-length Z-score [WLZ]) failed to improve after a 2-month nutritional intervention underwent esophagogastroduodenoscopy (EGD). Paired duodenal luminal aspirates and duodenal mucosal biopsies were obtained from 43 children. Duodenal microbiota composition was characterized by sequencing bacterial 16S rRNA gene amplicons. Levels of bacterial taxa (amplicon sequence variants [ASVs]) were referenced to anthropometric indices, histopathologic severity in biopsies, expression of selected genes in the duodenal mucosa, and fecal levels of an immunoinflammatory biomarker (lipocalin-2). A "core" group of eight bacterial ASVs was present in the duodenal samples of 69% of participants. Streptococcus anginosus was the most prevalent, followed by Streptococcus sp., Gemella haemolysans, Streptococcus australis, Granulicatella elegans, Granulicatella adiacens, and Abiotrophia defectiva. At the time of EGD, none of the core taxa were significantly correlated with WLZ. Statistically significant correlations were documented between the abundances of Granulicatella elegans and Granulicatella adiacens and the expression of duodenal mucosal genes involved in immune responses (dual oxidase maturation factor 2, serum amyloid A, and granzyme H). These results suggest that a potential role for members of the oral microbiota in pathogenesis, notably Streptococcus, Gemella, and Granulicatella species, warrants further investigation.IMPORTANCEUndernutrition among women and children is a pressing global health problem. Environmental enteric dysfunction (EED) is a disease of the small intestine (SI) associated with impaired gut mucosal barrier function and reduced capacity for nutrient absorption. The cause of EED is ill-defined. One emerging hypothesis is that alterations in the SI microbiota contribute to EED. We performed a culture-independent analysis of the SI microbiota of a cohort of Pakistani children with undernutrition who had failed a standard nutritional intervention, underwent upper gastrointestinal tract endoscopy, and had histologic evidence of EED in their duodenal mucosal biopsies. The results revealed a shared group of bacterial taxa in their duodenums whose absolute abundances were correlated with levels of the expression of genes in the duodenal mucosa that are involved in inflammatory responses. A number of these bacterial taxa are more typically found in the oral microbiota, a finding that has potential physiologic and therapeutic implications.


Subject(s)
Bacteria , Duodenum , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Humans , Duodenum/microbiology , Duodenum/pathology , Female , Male , RNA, Ribosomal, 16S/genetics , Pakistan , Infant , Gastrointestinal Microbiome/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Malnutrition/microbiology , Child, Preschool , Feces/microbiology , Cohort Studies
5.
Proc Natl Acad Sci U S A ; 121(19): e2321836121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38687788

ABSTRACT

Interleukin 22 (IL-22) promotes intestinal barrier integrity, stimulating epithelial cells to enact defense mechanisms against enteric infections, including the production of antimicrobial peptides. IL-22 binding protein (IL-22BP) is a soluble decoy encoded by the Il22ra2 gene that decreases IL-22 bioavailability, attenuating IL-22 signaling. The impact of IL-22BP on gut microbiota composition and functioning is poorly understood. We found that Il22ra2-/- mice are better protected against Clostridioides difficile and Citrobacter rodentium infections. This protection relied on IL-22-induced antimicrobial mechanisms before the infection occurred, rather than during the infection itself. Indeed, the gut microbiota of Il22ra2-/- mice mitigated infection of wild-type (WT) mice when transferred via cohousing or by cecal microbiota transplantation. Indicator species analysis of WT and Il22ra2-/- mice with and without cohousing disclosed that IL22BP deficiency yields a gut bacterial composition distinct from that of WT mice. Manipulation of dietary fiber content, measurements of intestinal short-chain fatty acids and oral treatment with acetate disclosed that resistance to C. difficile infection is related to increased production of acetate by Il22ra2-/--associated microbiota. Together, these findings suggest that IL-22BP represents a potential therapeutic target for those at risk for or with already manifest infection with this and perhaps other enteropathogens.


Subject(s)
Citrobacter rodentium , Clostridioides difficile , Enterobacteriaceae Infections , Gastrointestinal Microbiome , Interleukin-22 , Mice, Knockout , Animals , Mice , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/prevention & control , Receptors, Interleukin/metabolism , Receptors, Interleukin/genetics , Interleukins/metabolism , Mice, Inbred C57BL , Clostridium Infections/immunology , Clostridium Infections/microbiology , Clostridium Infections/prevention & control
6.
Nat Microbiol ; 9(4): 922-937, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38503977

ABSTRACT

Microbiota-directed complementary food (MDCF) formulations have been designed to repair the gut communities of malnourished children. A randomized controlled trial demonstrated that one formulation, MDCF-2, improved weight gain in malnourished Bangladeshi children compared to a more calorically dense standard nutritional intervention. Metagenome-assembled genomes from study participants revealed a correlation between ponderal growth and expression of MDCF-2 glycan utilization pathways by Prevotella copri strains. To test this correlation, here we use gnotobiotic mice colonized with defined consortia of age- and ponderal growth-associated gut bacterial strains, with or without P. copri isolates closely matching the metagenome-assembled genomes. Combining gut metagenomics and metatranscriptomics with host single-nucleus RNA sequencing and gut metabolomic analyses, we identify a key role of P. copri in metabolizing MDCF-2 glycans and uncover its interactions with other microbes including Bifidobacterium infantis. P. copri-containing consortia mediated weight gain and modulated energy metabolism within intestinal epithelial cells. Our results reveal structure-function relationships between MDCF-2 and members of the gut microbiota of malnourished children with potential implications for future therapies.


Subject(s)
Gastrointestinal Microbiome , Malnutrition , Microbiota , Prevotella , Animals , Mice , Gastrointestinal Microbiome/genetics , Weight Gain
7.
Opt Lett ; 49(6): 1441-1444, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489420

ABSTRACT

A fundamentally new, to the best of our knowledge, class of linear (2D) dual-mirror aplanats tailored to tubular absorbers is developed for the types of solar concentrators used for thermal power. It is shown that prior investigation establishing this concept possesses unrecognized additional designs, as well as having missed high-performance configurations. It is shown that our line-focus solar concentrators can attain intercept factors exceeding 0.9 at concentration values as high as 55, with practical mirror contours and assemblies. Designed expressly for tubular absorbers, they represent improvements upon previous aplanatic concentrators that were tailored to flat one-sided absorbers but applied to tubular absorbers (as well as to conventional parabolic troughs).

9.
Nature ; 625(7993): 157-165, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38093016

ABSTRACT

Evidence is accumulating that perturbed postnatal development of the gut microbiome contributes to childhood malnutrition1-4. Here we analyse biospecimens from a randomized, controlled trial of a microbiome-directed complementary food (MDCF-2) that produced superior rates of weight gain compared with a calorically more dense conventional ready-to-use supplementary food in 12-18-month-old Bangladeshi children with moderate acute malnutrition4. We reconstructed 1,000 bacterial genomes (metagenome-assembled genomes (MAGs)) from the faecal microbiomes of trial participants, identified 75 MAGs of which the abundances were positively associated with ponderal growth (change in weight-for-length Z score (WLZ)), characterized changes in MAG gene expression as a function of treatment type and WLZ response, and quantified carbohydrate structures in MDCF-2 and faeces. The results reveal that two Prevotella copri MAGs that are positively associated with WLZ are the principal contributors to MDCF-2-induced expression of metabolic pathways involved in utilizing the component glycans of MDCF-2. The predicted specificities of carbohydrate-active enzymes expressed by their polysaccharide-utilization loci are correlated with (1) the in vitro growth of Bangladeshi P. copri strains, possessing varying degrees of polysaccharide-utilization loci and genomic conservation with these MAGs, in defined medium containing different purified glycans representative of those in MDCF-2, and (2) the levels of faecal carbohydrate structures in the trial participants. These associations suggest that identifying bioactive glycan structures in MDCFs metabolized by growth-associated bacterial taxa will help to guide recommendations about their use in children with acute malnutrition and enable the development of additional formulations.


Subject(s)
Food , Gastrointestinal Microbiome , Malnutrition , Polysaccharides , Humans , Infant , Bacteria/genetics , Bangladesh , Body Weight/genetics , Feces/microbiology , Gastrointestinal Microbiome/physiology , Genome, Bacterial/genetics , Malnutrition/microbiology , Metagenome/genetics , Polysaccharides/metabolism , Weight Gain
10.
Proc Natl Acad Sci U S A ; 120(39): e2311422120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37733741

ABSTRACT

Understanding how members of the human gut microbiota prioritize nutrient resources is one component of a larger effort to decipher the mechanisms defining microbial community robustness and resiliency in health and disease. This knowledge is foundational for development of microbiota-directed therapeutics. To model how bacteria prioritize glycans in the gut, germfree mice were colonized with 13 human gut bacterial strains, including seven saccharolytic Bacteroidaceae species. Animals were fed a Western diet supplemented with pea fiber. After community assembly, an inducible CRISPR-based system was used to selectively and temporarily reduce the absolute abundance of Bacteroides thetaiotaomicron or B. cellulosilyticus by 10- to 60-fold. Each knockdown resulted in specific, reproducible increases in the abundances of other Bacteroidaceae and dynamic alterations in their expression of genes involved in glycan utilization. Emergence of these "alternate consumers" was associated with preservation of community saccharolytic activity. Using an inducible system for CRISPR base editing in vitro, we disrupted translation of transporters critical for utilizing dietary polysaccharides in Phocaeicola vulgatus, a B. cellulosilyticus knockdown-responsive taxon. In vitro and in vivo tests of the resulting P. vulgatus mutants allowed us to further characterize mechanisms associated with its increased fitness after knockdown. In principle, the approach described can be applied to study utilization of a range of nutrients and to preclinical efforts designed to develop therapeutic strategies for precision manipulation of microbial communities.


Subject(s)
Bacteroides thetaiotaomicron , Bacteroides , Humans , Animals , Mice , Bacteroides/genetics , Polysaccharides , Bacteroides thetaiotaomicron/genetics , Biological Assay , Diet, Western
11.
bioRxiv ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37645712

ABSTRACT

Preclinical and clinical studies are providing evidence that the healthy growth of infants and children reflects, in part, healthy development of their gut microbiomes1-5. This process of microbial community assembly and functional maturation is perturbed in children with acute malnutrition. Gnotobiotic animals, colonized with microbial communities from children with severe and moderate acute malnutrition, have been used to develop microbiome-directed complementary food (MDCF) formulations for repairing the microbiomes of these children during the weaning period5. Bangladeshi children with moderate acute malnutrition (MAM) participating in a previously reported 3-month-long randomized controlled clinical study of one such formulation, MDCF-2, exhibited significantly improved weight gain compared to a commonly used nutritional intervention despite the lower caloric density of the MDCF6. Characterizing the 'metagenome assembled genomes' (MAGs) of bacterial strains present in the microbiomes of study participants revealed a significant correlation between accelerated ponderal growth and the expression by two Prevotella copri MAGs of metabolic pathways involved in processing of MDCF-2 glycans1. To provide a direct test of these relationships, we have now performed 'reverse translation' experiments using a gnotobiotic mouse model of mother-to-offspring microbiome transmission. Mice were colonized with defined consortia of age- and ponderal growth-associated gut bacterial strains cultured from Bangladeshi infants/children in the study population, with or without P. copri isolates resembling the MAGs. By combining analyses of microbial community assembly, gene expression and processing of glycan constituents of MDCF-2 with single nucleus RNA-Seq and mass spectrometric analyses of the intestine, we establish a principal role for P. copri in mediating metabolism of MDCF-2 glycans, characterize its interactions with other consortium members including Bifidobacterium longum subsp. infantis, and demonstrate the effects of P. copri-containing consortia in mediating weight gain and modulating the activities of metabolic pathways involved in lipid, amino acid, carbohydrate plus other facets of energy metabolism within epithelial cells positioned at different locations in intestinal crypts and villi. Together, the results provide insights into structure/function relationships between MDCF-2 and members of the gut communities of malnourished children; they also have implications for developing future prebiotic, probiotic and/or synbiotic therapeutics for microbiome restoration in children with already manifest malnutrition, or who are at risk for this pervasive health challenge.

12.
medRxiv ; 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37645824

ABSTRACT

Evidence is accumulating that perturbed postnatal development of the gut microbiome contributes to childhood malnutrition1-4. Designing effective microbiome-directed therapeutic foods to repair these perturbations requires knowledge about how food components interact with the microbiome to alter its expressed functions. Here we use biospecimens from a randomized, controlled trial of a microbiome-directed complementary food prototype (MDCF-2) that produced superior rates of weight gain compared to a conventional ready-to-use supplementary food (RUSF) in 12-18-month-old Bangladeshi children with moderate acute malnutrition (MAM)4. We reconstructed 1000 bacterial genomes (metagenome-assembled genomes, MAGs) present in their fecal microbiomes, identified 75 whose abundances were positively associated with weight gain (change in weight-for-length Z score, WLZ), characterized gene expression changes in these MAGs as a function of treatment type and WLZ response, and used mass spectrometry to quantify carbohydrate structures in MDCF-2 and feces. The results reveal treatment-induced changes in expression of carbohydrate metabolic pathways in WLZ-associated MAGs. Comparing participants consuming MDCF-2 versus RUSF, and MDCF-2-treated children in the upper versus lower quartiles of WLZ responses revealed that two Prevotella copri MAGs positively associated with WLZ were principal contributors to MDCF-2-induced expression of metabolic pathways involved in utilization of its component glycans. Moreover, the predicted specificities of carbohydrate active enzymes expressed by polysaccharide utilization loci (PULs) in these two MAGs correlate with the (i) in vitro growth of Bangladeshi P. copri strains, possessing differing degrees of PUL and overall genomic content similarity to these MAGs, cultured in defined medium containing different purified glycans representative of those in MDCF-2, and (ii) levels of carbohydrate structures identified in feces from clinical trial participants. In the accompanying paper5, we use a gnotobiotic mouse model colonized with age- and WLZ-associated bacterial taxa cultured from this study population, and fed diets resembling those consumed by study participants, to directly test the relationship between P. copri, MDCF-2 glycan metabolism, host ponderal growth responses, and intestinal gene expression and metabolism. The ability to identify bioactive glycan structures in MDCFs that are metabolized by growth-associated bacterial taxa will help guide recommendations about use of this MDCF for children with acute malnutrition representing different geographic locales and ages, as well as enable development of bioequivalent, or more efficacious, formulations composed of culturally acceptable and affordable ingredients.

13.
Gut Microbes ; 15(1): 2236755, 2023.
Article in English | MEDLINE | ID: mdl-37475479

ABSTRACT

Aging is associated with low bone and lean mass as well as alterations in the gut microbiota (GM). In this study, we determined whether the reduced bone mass and relative lean mass observed in old mice could be transferred to healthy young mice by GM transplantation (GMT). GM from old (21-month-old) and young adult (5-month-old) donors was used to colonize germ-free (GF) mice in three separate studies involving still growing 5- or 11-week-old recipients and 17-week-old recipients with minimal bone growth. The GM of the recipient mice was similar to that of the donors, demonstrating successful GMT. GM from old mice did not have statistically significant effects on bone mass or bone strength, but significantly reduced the lean mass percentage of still growing recipient mice when compared with recipients of GM from young adult mice. The levels of propionate in the cecum of mice receiving old donor GM were significantly lower than those in mice receiving young adult donor GM. Bacteroides ovatus was enriched in the microbiota of recipient mice harboring GM from young adult donors. The presence of B. ovatus was not only significantly associated with high lean mass percentage in mice, but also with lean mass adjusted for fat mass in the large human HUNT cohort. In conclusion, GM from old mice reduces lean mass percentage but not bone mass in young, healthy, still growing recipient mice. Future studies are warranted to determine whether GM from young mice improves the musculoskeletal phenotype of frail elderly recipient mice.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Young Adult , Humans , Mice , Animals , Aged , Infant , Fecal Microbiota Transplantation , Aging , Cecum
14.
J Palliat Med ; 26(5): 608, 2023 05.
Article in English | MEDLINE | ID: mdl-37130283
15.
J Healthc Qual ; 45(3): 160-168, 2023.
Article in English | MEDLINE | ID: mdl-36790899

ABSTRACT

INTRODUCTION: Dysphagia, a complication of traumatic brain injuries (TBIs), can lead to death. Cervical collar (c-collar) restriction may increase the risk for dysphagia. The objective was to determine how c-collars affect dysphagia rates. METHODS: This retrospective cohort study included geriatric TBIs or cervical spine injuries (January 2016 to December 2018) at a Level 1 trauma center. Outcomes (dysphagia, aspiration, and respiratory failure) were compared by c-collar placement. RESULTS: There were 684 patients: 21.5% had a c-collar and 78.5% did not. Demographics, injury severity score, and Glasgow Coma Scale were comparable. Dysphagia (53.7% vs. 39.3%, p = .002) and respiratory failure (17.0% vs. 6.9%, p = .0002) were more common among patients with c-collars. Aspiration rates ( p = .11) were similar. After adjustment, patients with a c-collar had a significantly higher odds of dysphagia and respiratory failure. Among patients who did not receive swallow therapy, aspiration ( p = .02) and respiratory failure ( p < .0001) were more common for those with c-collars. CONCLUSIONS: C-collar placement increased the risk for dysphagia and respiratory failure. There was evidence that swallow therapy may modify the effect of c-collar placement. For patients who did not receive swallow therapy, aspiration was more common among those with a c-collar. Dysphagia screening among patients with a c-collar may improve patient quality.


Subject(s)
Brain Injuries, Traumatic , Deglutition Disorders , Respiratory Insufficiency , Humans , Aged , Retrospective Studies , Deglutition Disorders/etiology , Cervical Vertebrae/injuries
16.
Science ; 379(6628): eadd1236, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36634180

ABSTRACT

Tau-mediated neurodegeneration is a hallmark of Alzheimer's disease. Primary tauopathies are characterized by pathological tau accumulation and neuronal and synaptic loss. Apolipoprotein E (ApoE)-mediated neuroinflammation is involved in the progression of tau-mediated neurodegeneration, and emerging evidence suggests that the gut microbiota regulates neuroinflammation in an APOE genotype-dependent manner. However, evidence of a causal link between the microbiota and tau-mediated neurodegeneration is lacking. In this study, we characterized a genetically engineered mouse model of tauopathy expressing human ApoE isoforms reared under germ-free conditions or after perturbation of their gut microbiota with antibiotics. Both of these manipulations reduced gliosis, tau pathology, and neurodegeneration in a sex- and ApoE isoform-dependent manner. The findings reveal mechanistic and translationally relevant interrelationships between the microbiota, neuroinflammation, and tau-mediated neurodegeneration.


Subject(s)
Apolipoproteins E , Gastrointestinal Microbiome , Neuroinflammatory Diseases , Tauopathies , Animals , Humans , Mice , Anti-Bacterial Agents/pharmacology , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Disease Models, Animal , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Mice, Transgenic , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/microbiology , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/genetics , Tauopathies/metabolism , Tauopathies/microbiology , Sex Factors
17.
Opt Express ; 30(22): 40328-40336, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36298967

ABSTRACT

Microcell concentrating photovoltaics (µCPV) have the potential to improve performance and reduce the cost of solar power in space. Here, we introduce an ultracompact V-cone tailored edge ray (V-TERC) concentrator, rooted in nonimaging optics, which enables operation near the sine limit. Relative to previous space µCPV implementations, this concentrator design enables an approximate four-fold increase in concentration ratio for a given acceptance angle and specific power. We validate the design through ray tracing simulations and construction of a proof-of-concept system that consists of a 650 × 650 µm2 triple-junction microcell bonded to a 3.1 mm-thick prototype V-TERC optic. In outdoor testing on a sunny day, the system achieves a power conversion efficiency of 30% at a geometric gain of 137× with a specific power of 90 W kg-1 and an acceptance angle of ±4.5°. This is a record combination for µCPV to date and represents an important step toward increasing efficiency and lowering the cost of solar power in space.

18.
Trauma Surg Acute Care Open ; 7(1): e000952, 2022.
Article in English | MEDLINE | ID: mdl-36068845

ABSTRACT

Objectives: Open fractures are at risk of infection because of exposure of bone and tissue to the environment. Facial fractures are often accompanied by other severe injuries, and therefore fracture management may be delayed until after stabilization. Previous studies in this area have examined timing of multiple facets of care but have tended to report on each in isolation (eg, antibiotic initiation). Methods: This was a retrospective study of adult patients admitted to five trauma centers from January 1, 2017 to March 31, 2021 with open facial fractures. Variables collected included demographics, injury mechanism, details on facial and non-facial injuries, facial fracture management (irrigation and debridement (I&D), irrigation without debridement, open reduction internal fixation (ORIF), antibiotics), and other hospital events. The study hypothesized that the presence of serious non-facial injuries would be associated with delays in facial fracture management. The primary aims were to describe open facial fracture management practices and examine factors associated with early versus delayed fracture management. A secondary aim was to describe infection rates. Early treatment was defined as within 24 hours of arrival for I&D, irrigation without debridement, and ORIF and within 1 hour for antibiotics. Results: A total of 256 patients were included. Twenty-seven percent had major trauma (Injury Severity Score ≥16). The presence of serious head injury/traumatic brain injury was associated with delayed I&D (ORearly=0.04, p<0.01), irrigation without debridement (ORearly=0.09, p<0.01), and ORIF (ORearly=0.10, p<0.01). Going to the OR within 24 hours was associated with early I&D (ORearly=377.26, p<0.01), irrigation without debridement (ORearly=13.54, p<0.01), and ORIF (ORearly=154.92, p<0.01). The infection rate was 4%. Conclusions: In this examination of multiple aspects of open facial fracture management, serious injuries to non-facial regions led to delays in surgical fracture management, consistent with the study hypothesis. Level of evidence: Level III, prognostic/epidemiological.

19.
Elife ; 112022 08 17.
Article in English | MEDLINE | ID: mdl-35976223

ABSTRACT

Cellular behaviors emerge from layers of molecular interactions: proteins interact to form complexes, pathways, and phenotypes. We show that hierarchical networks of protein interactions can be defined from the statistical pattern of proteome variation measured across thousands of diverse bacteria and that these networks reflect the emergence of complex bacterial phenotypes. Our results are validated through gene-set enrichment analysis and comparison to existing experimentally derived databases. We demonstrate the biological utility of our approach by creating a model of motility in Pseudomonas aeruginosa and using it to identify a protein that affects pilus-mediated motility. Our method, SCALES (Spectral Correlation Analysis of Layered Evolutionary Signals), may be useful for interrogating genotype-phenotype relationships in bacteria.


Subject(s)
Protein Interaction Maps , Proteome , Bacteria/genetics , Fimbriae, Bacterial , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...