Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Viruses ; 15(7)2023 06 23.
Article in English | MEDLINE | ID: mdl-37515114

ABSTRACT

The issue of antibiotic resistance in healthcare worldwide has led to a pressing need to explore and develop alternative approaches to combat infectious diseases. Among these methods, phage therapy has emerged as a potential solution to tackle this growing challenge. Virulent phages of the Herelleviridae family, known for their ability to cause lysis of Staphylococcus aureus, a clinically significant pathogen frequently associated with multidrug resistance, have proven to be one of the most effective viruses utilized in phage therapy. In order to utilize phages for therapeutic purposes effectively, a thorough investigation into their physiology and mechanisms of action on infected cells is essential. The use of omics technologies, particularly total RNA sequencing, is a promising approach for analyzing the interaction between phages and their hosts, allowing for the assessment of both the behavior of the phage during infection and the cell's response. This review aims to provide a comprehensive overview of the physiology of the Herelleviridae family, utilizing existing analyses of their total phage transcriptomes. Additionally, it sheds light on the changes that occur in the metabolism of S. aureus when infected with virulent bacteriophages, contributing to a deeper understanding of the phage-host interaction.


Subject(s)
Bacteriophages , Caudovirales , Phage Therapy , Staphylococcal Infections , Humans , Staphylococcus aureus/genetics , Bacteriophages/genetics , Staphylococcus Phages/genetics , Staphylococcal Infections/therapy
2.
Int J Mol Sci ; 24(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36901913

ABSTRACT

Phage therapy is now seen as a promising way to overcome the current global crisis in the spread of multidrug-resistant bacteria. However, phages are highly strain-specific, and in most cases one will have to isolate a new phage or search for a phage suitable for a therapeutic application in existing libraries. At an early stage of the isolation process, rapid screening techniques are needed to identify and type potential virulent phages. Here, we propose a simple PCR approach to differentiate between two families of virulent Staphylococcus phages (Herelleviridae and Rountreeviridae) and eleven genera of virulent Klebsiella phages (Przondovirus, Taipeivirus, Drulisvirus, Webervirus, Jiaodavirus, Sugarlandvirus, Slopekvirus, Jedunavirus, Marfavirus, Mydovirus and Yonseivirus). This assay includes a thorough search of a dataset comprising S. aureus (n = 269) and K. pneumoniae (n = 480) phage genomes available in the NCBI RefSeq/GenBank database for specific genes that are highly conserved at the taxonomic group level. The selected primers showed high sensitivity and specificity for both isolated DNA and crude phage lysates, which permits circumventing DNA purification protocols. Our approach can be extended and applied to any group of phages, given the large number of available genomes in the databases.


Subject(s)
Bacteriophages , Staphylococcus aureus , Staphylococcus aureus/genetics , Klebsiella pneumoniae/genetics , Bacteriophages/genetics , Myoviridae/genetics , Polymerase Chain Reaction
3.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835449

ABSTRACT

In order to address the upcoming crisis in the treatment of Klebsiella pneumoniae infections, caused by an increasing proportion of resistant isolates, new approaches to antimicrobial therapy must be developed. One approach would be to use (bacterio)phages and/or phage derivatives for therapy. In this study, we present a description of the first K. pneumoniae phage from the Zobellviridae family. The vB_KpnP_Klyazma podovirus, which forms translucent halos around the plaques, was isolated from river water. The phage genome is composed of 82 open reading frames, which are divided into two clusters located on opposite strands. Phylogenetic analysis revealed that the phage belongs to the Zobellviridae family, although its identity with the closest member of this family was not higher than 5%. The bacteriophage demonstrated lytic activity against all (n = 11) K. pneumoniae strains with the KL20 capsule type, but only the host strain was lysed effectively. The receptor-binding protein of the phage was identified as a polysaccharide depolymerase with a pectate lyase domain. The recombinant depolymerase protein showed concentration-dependent activity against all strains with the KL20 capsule type. The ability of a recombinant depolymerase to cleave bacterial capsular polysaccharides regardless of a phage's ability to successfully infect a particular strain holds promise for the possibility of using depolymerases in antimicrobial therapy, even though they only make bacteria sensitive to environmental factors, rather than killing them directly.


Subject(s)
Bacteriophages , Podoviridae , Bacteriophages/genetics , Klebsiella pneumoniae/genetics , Phylogeny , Genome, Viral , Podoviridae/genetics , Recombinant Proteins/genetics
4.
Viruses ; 14(3)2022 03 09.
Article in English | MEDLINE | ID: mdl-35336974

ABSTRACT

In light of the ever-increasing number of multidrug-resistant bacteria worldwide, bacteriophages are becoming a valid alternative to antibiotics; therefore, their interactions with host bacteria must be thoroughly investigated. Here, we report genome-wide transcriptional changes in a clinical Staphylococcus aureus SA515 strain for three time points after infection with the vB_SauM-515A1 kayvirus. Using an RNA sequencing approach, we identify 263 genes that were differentially expressed (DEGs) between phage-infected and uninfected host samples. Most of the DEGs were identified at an early stage of phage infection and were mainly involved in nucleotide and amino acid metabolism, as well as in cell death prevention. At the subsequent infection stages, the vast majority of DEGs were upregulated. Interestingly, 39 upregulated DEGs were common between the 15th and 30th minutes post-infection, and a substantial number of them belonged to the prophages. Furthermore, some virulence factors were overexpressed at the late infection stage, which necessitates more stringent host strain selection requirements for further use of bacteriophages for therapeutic purposes. Thus, this work allows us to better understand the influence of kayviruses on the metabolic systems of S. aureus and contributes to a better comprehension of phage therapy.


Subject(s)
Bacteriophages , Staphylococcal Infections , Bacteriophages/genetics , Genome, Viral , Humans , Staphylococcal Infections/microbiology , Staphylococcus Phages/genetics , Staphylococcus aureus/genetics , Transcriptome
5.
Front Microbiol ; 12: 669618, 2021.
Article in English | MEDLINE | ID: mdl-34434173

ABSTRACT

Antibiotic resistance is a major public health concern in many countries worldwide. The rapid spread of multidrug-resistant (MDR) bacteria is the main driving force for the development of novel non-antibiotic antimicrobials as a therapeutic alternative. Here, we isolated and characterized three virulent bacteriophages that specifically infect and lyse MDR Klebsiella pneumoniae with K23 capsule type. The phages belonged to the Autographiviridae (vB_KpnP_Dlv622) and Myoviridae (vB_KpnM_Seu621, KpS8) families and contained highly similar receptor-binding proteins (RBPs) with polysaccharide depolymerase enzymatic activity. Based on phylogenetic analysis, a similar pattern was also noted for five other groups of depolymerases, specific against capsule types K1, K30/K69, K57, K63, and KN2. The resulting recombinant depolymerases Dep622 (phage vB_KpnP_Dlv622) and DepS8 (phage KpS8) demonstrated narrow specificity against K. pneumoniae with capsule type K23 and were able to protect Galleria mellonella larvae in a model infection with a K. pneumoniae multidrug-resistant strain. These findings expand our knowledge of the diversity of phage depolymerases and provide further evidence that bacteriophages and phage polysaccharide depolymerases represent a promising tool for antimicrobial therapy.

6.
Viruses ; 12(11)2020 11 17.
Article in English | MEDLINE | ID: mdl-33213043

ABSTRACT

The Twort-like myoviruses (Kayvirus genus) of S. aureus are promising agents for bacteriophage therapy due to a broad host range and high killing activity against clinical isolates. This work improves the current understanding of the phage infection physiology by transcriptome analysis. The expression profiles of a typical member of the Kayvirus genus (vB_SauM-515A1) were obtained at three time-points post-infection using RNA sequencing. A total of 35 transcription units comprising 238 ORFs were established. The sequences for 58 early and 12 late promoters were identified in the phage genome. The early promoters represent the strong sigma-70 promoters consensus sequence and control the host-dependent expression of 26 transcription units (81% of genes). The late promoters exclusively controlled the expression of four transcription units, while the transcription of the other five units was directed by both types of promoters. The characteristic features of late promoters were long -10 box of TGTTATATTA consensus sequence and the absence of -35 boxes. The data obtained are also of general interest, demonstrating a strategy of the phage genome expression with a broad overlap of the early and late transcription phases without any middle transcription, which is unusual for the large phage genomes (>100 kbp).


Subject(s)
Gene Expression Profiling , Genome, Viral , Promoter Regions, Genetic , Staphylococcus Phages/genetics , Host Specificity , Open Reading Frames , Sequence Analysis, RNA , Staphylococcus aureus/virology , Transcription, Genetic
7.
Sci Rep ; 10(1): 18612, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33122703

ABSTRACT

Bacteriophage therapy is considered one of the most promising therapeutic approaches against multi-drug resistant bacterial infections. Infections caused by Staphylococcus aureus are very efficiently controlled with therapeutic bacteriophage cocktails, containing a number of individual phages infecting a majority of known pathogenic S. aureus strains. We assessed the contribution of individual bacteriophages comprising a therapeutic bacteriophage cocktail against S. aureus in order to optimize its composition. Two lytic bacteriophages vB_SauM-515A1 (Myoviridae) and vB_SauP-436A (Podoviridae) were isolated from the commercial therapeutic cocktail produced by Microgen (Russia). Host ranges of the phages were established on the panel of 75 S. aureus strains. Phage vB_SauM-515A1 lysed 85.3% and vB_SauP-436A lysed 68.0% of the strains, however, vB_SauP-436A was active against four strains resistant to vB_SauM-515A1, as well as to the therapeutic cocktail per se. Suboptimal results of the therapeutic cocktail application were due to extremely low vB_SauP-436A1 content in this composition. Optimization of the phage titers led to an increase in overall cocktail efficiency. Thus, one of the effective ways to optimize the phage cocktails design was demonstrated and realized by using bacteriophages of different families and lytic spectra.


Subject(s)
Bacteriophages/genetics , Myoviridae/genetics , Podoviridae/genetics , Staphylococcal Infections/virology , Staphylococcus Phages/genetics , Staphylococcus aureus/virology , Drug Resistance, Multiple, Bacterial/genetics , Genome, Viral/genetics , Host Specificity/genetics , Humans , Phage Therapy/methods , Russia
8.
BMC Genomics ; 18(1): 544, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28724357

ABSTRACT

BACKGROUND: Escherichia coli (E. coli) has been increasingly implicated in the pathogenesis of Crohn's disease (CD). The phylogeny of E. coli isolated from Crohn's disease patients (CDEC) was controversial, and while genotyping results suggested heterogeneity, the sequenced strains of E. coli from CD patients were closely related. RESULTS: We performed the shotgun genome sequencing of 28 E. coli isolates from ten CD patients and compared genomes from these isolates with already published genomes of CD strains and other pathogenic and non-pathogenic strains. CDEC was shown to belong to A, B1, B2 and D phylogenetic groups. The plasmid and several operons from the reference CD-associated E. coli strain LF82 were demonstrated to be more often present in CDEC genomes belonging to different phylogenetic groups than in genomes of commensal strains. The operons include carbon-source induced invasion GimA island, prophage I, iron uptake operons I and II, capsular assembly pathogenetic island IV and propanediol and galactitol utilization operons. CONCLUSIONS: Our findings suggest that CDEC are phylogenetically diverse. However, some strains isolated from independent sources possess highly similar chromosome or plasmids. Though no CD-specific genes or functional domains were present in all CD-associated strains, some genes and operons are more often found in the genomes of CDEC than in commensal E. coli. They are principally linked to gut colonization and utilization of propanediol and other sugar alcohols.


Subject(s)
Crohn Disease/microbiology , Escherichia coli/genetics , Escherichia coli/physiology , Genomics , Adult , Anti-Bacterial Agents/pharmacology , Bacteriocins/biosynthesis , Drug Resistance, Bacterial/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Female , Genetic Variation , Humans , Male , Middle Aged , Phylogeny , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL