Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 952: 175880, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39216756

ABSTRACT

Occupational asthma (OA) is a common occupational pulmonary disease that is frequently underdiagnosed and underreported. The complexity of diagnosing and treating OA creates a significant social and economic burden, making it an important public health issue. In addition to avoiding allergens, patients with OA require pharmacotherapy; however, new therapeutic targets and strategies need further investigation. Autophagy may be a promising intervention target, but there is a lack of relevant studies summarizing the role of autophagy in OA. In this review consolidates the current understanding of OA, detailing principal and novel agents responsible for its onset. Additionally, we summarize the mechanisms of autophagy in HMW and LMW agents induced OA, revealing that occupational allergens can induce autophagy disorders in lung epithelial cells, smooth muscle cells, and dendritic cells, ultimately leading to OA through involving inflammatory responses, oxidative stress, and cell death. Finally, we discuss the prospects of targeting autophagy as an effective strategy for managing OA and even steroid-resistant asthma, encompassing autophagy interventions focused on organoids, organ-on-a-chip systems, nanomaterials vehicle, and nanobubbles; developing combined exposure models, and the role of non-classical autophagy in occupational asthma. In briefly, this review summarizes the role of autophagy in occupational asthma, offers a theoretical foundation for OA interventions based on autophagy, and identifies directions and challenges for future research.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123113, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37481926

ABSTRACT

Because of sulfite's potential toxicity, there is a growing concern about detecting and controlling its concentration in foods, alcoholic beverages, pharmaceuticals, and environmental samples to ensure public health. A branched polyethyleneimine-coated silver nano-star (AgNS@PEI) surface-enhanced Raman scattering (SERS) substrate was synthesized in this study for use as a sensitive, simple, rapid, stable, and reproducible non-destructible sulfite detection analytical technique. The seed morphology of the nano-star was created by using hydroxylamine (NH2OH) solution as a primary reducing agent, followed by a slow secondary reduction by trisodium citrate dihydrate (HOC(COONa)(CH2COONa)2 2H2O), resulting in the complete growth of the silver nano-star. For extra stability and selective absorption of sulfur dioxide from the headspace extraction of SO2 from sulfites, the nano-stars were thin coated with branched polyethyleneimine (b-PEI). The results showed that the thin-coated plasmonic substrates selectively absorb sulfur dioxide molecules, allowing sulfites in beer samples to be detected with a detection limit of 0.48 mg/L. Furthermore, the PEI-coated silver nano-star demonstrated increased stability and reproducibility, allowing for longer use of the substrate. Recovery experiments with recovery rates ranging from 95 to 112% and relative standard deviations ranging from 1.55 to 8.1% demonstrated that headspace extraction, selective SO2 absorption by the synthesized substrate, and subsequent SERS detections were reliable and valid for practical applications. Finally, this study developed an SO2-sensitive, selective, and robust Si@AgNS@PEI substrate for effective SERS detection and monitoring of sulfite levels in real-world environmental samples.

3.
Environ Pollut ; 319: 121006, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36610652

ABSTRACT

The Huangshui catchment on the northeastern Qinghai-Tibet Plateau (QTP) was selected as the study area to investigate the abundance, distribution characteristics, and influencing factors of microplastics (MPs) in surface agricultural soils (0-20 cm). The MP levels ranged from 6 to 444 items/kg, with an average of 86 items/kg. The relative abundance of small-sized MPs (<2 mm) was higher than that of large-sized MPs (2-5 mm). Polyethylene was the most common, and residual mulching film in farmland was the main source of MPs. The spatial distribution characteristics of MPs were analyzed through inverse distance weight interpolation, and MP abundance in agricultural soils in neighboring urban areas was significantly higher than that in other areas. Further analysis found that population density was significantly positively correlated with MP abundance (R2 = 0.9090, p < 0.01), indicating that human activities play a key role in MP pollution even in remote areas. In addition, the effects of irrigation, land use type, and soil physicochemical properties on the abundance of MPs were analyzed. Atmospheric transport and irrigation with surface water contribute to soil MP pollution. The direct effects of soil properties on MP abundance are still largely unclear, requiring further studies.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Plastics , Water Pollutants, Chemical/analysis , Environmental Monitoring , Soil
5.
Environ Sci Pollut Res Int ; 30(3): 7582-7592, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36040693

ABSTRACT

This study presents monitoring data on the spatial distribution and occurrence of pesticide residues of cultivated soil in the Huangshui catchment in the northeastern part of the Qinghai Tibet Plateau. We also provide factors that influence the distribution of pesticides, such as the properties of pesticides and soil and crop types. A total of 110 soil samples were collected in early April 2021, and 49 pesticides were analyzed. Only 3.6% of the samples contained no pesticide residues (concentrations < limit of quantitation or not detected [ND]), and the total pesticide concentration ranged from ND to 0.925 mg/kg. Most commonly, two to five pesticides were found in the soil samples (> 70.9%), and up to 10 pesticide residues were present in some samples. A total of 85 different pesticide combinations were observed in all the soil samples. Chlorpyrifos and difenoconazole were the dominant compounds. The levels of pesticide residues were mainly driven by their half-life values. Bulk density, along with soil water content and pH, also affected the retention of pesticides in the soil. The crop type played no role in the distribution of pesticides.


Subject(s)
Pesticide Residues , Pesticides , Soil Pollutants , Pesticide Residues/analysis , Tibet , Environmental Monitoring , Soil Pollutants/analysis , Pesticides/analysis , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL