Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Front Microbiol ; 15: 1337917, 2024.
Article En | MEDLINE | ID: mdl-38800749

Introduction: Microbial population structures within fecal samples are vital for disease screening, diagnosis, and gut microbiome research. The two primary methods for collecting feline fecal samples are: (1) using a fecal loop, which retrieves a rectal sample using a small, looped instrument, and (2) using the litter box, which collects stool directly from the litter. Each method has its own advantages and disadvantages and is suitable for different research objectives. Methods and results: Whole-genome shotgun metagenomic sequencing were performed on the gut microbiomes of fecal samples collected using these two methods from 10 adult cats housed in the same research facility. We evaluated the influence of collection methods on feline microbiome analysis, particularly their impact on DNA extraction, metagenomic sequencing yield, microbial composition, and diversity in subsequent gut microbiome analyses. Interestingly, fecal sample collection using a fecal loop resulted in a lower yield of microbial DNA compared to the litterbox method (p = 0.004). However, there were no significant differences between the two groups in the proportion of host contamination (p = 0.106), virus contamination (p = 0.232), relative taxonomy abundance of top five phyla (Padj > 0.638), or the number of microbial genes covered (p = 0.770). Furthermore, no significant differences were observed in alpha-diversity, beta-diversity, the number of taxa identified at each taxonomic level, and the relative abundance of taxonomic units. Discussion: These two sample collection methods do not affect microbial population structures within fecal samples and collecting fecal samples directly from the litterbox within 6 hours after defecation can be considered a reliable approach for microbiome research.

4.
Commun Biol ; 6(1): 655, 2023 06 21.
Article En | MEDLINE | ID: mdl-37344566

Alzheimer's disease (AD) is characterized by brain plaques, tangles, and cognitive impairment. AD is one of the most common age-related dementias in humans. Progress in characterizing AD and other age-related disorders is hindered by a perceived dearth of animal models that naturally reproduce diseases observed in humans. Mice and nonhuman primates are model systems used to understand human diseases. Still, these model systems lack many of the biological characteristics of Alzheimer-like diseases (e.g., plaques, tangles) as they grow older. In contrast, companion animal models (cats and dogs) age in ways that resemble humans. Both companion animal models and humans show evidence of brain atrophy, plaques, and tangles, as well as cognitive decline with age. We embrace a One Health perspective, which recognizes that the health of humans is connected to those of animals, and we illustrate how such a perspective can work synergistically to enhance human and animal health. A comparative biology perspective is ideally suited to integrate insights across veterinary and human medical disciplines and solve long-standing problems in aging.


Alzheimer Disease , Animals , Cats , Dogs , Humans , Mice , Aging , Brain , Pets , Plaque, Amyloid
5.
Front Vet Sci ; 10: 1072680, 2023.
Article En | MEDLINE | ID: mdl-36756310

Introduction: Feline obesity is common, afflicting ~25-40% of domestic cats. Obese cats are predisposed to many metabolic dyscrasias, such as insulin resistance, altered blood lipids, and feline hepatic lipidosis. Fibroblast Growth Factor-21 (FGF21) is an endocrine hormone that mediates the fat-liver axis, and in humans and animals, FGF21 can ameliorate insulin resistance, non-alcoholic fatty liver disease, and obesity. Activation of the FGF21 pathway may have therapeutic benefits for obese cats. Methods: In this preliminary cross-sectional study, ad libitum fed, purpose-bred, male-neutered, 6-year-old, obese and overweight cats were administered either 10 mg/kg/day of an FGF21 mimetic (FGF21; n = 4) or saline (control; n = 3) for 14 days. Body weight, food, and water intake were quantified daily during and 2 weeks following treatment. Changes in metabolic and liver parameters, intrahepatic triglyceride content, liver elasticity, and gut microbiota were evaluated. Results: Treatment with FGF21 resulted in significant weight loss (~5.93%) compared to control and a trend toward decreased intrahepatic triglyceride content. Cats treated with FGF21 had decreased serum alkaline phosphatase. No significant changes were noted in liver elasticity, serum, liver, or metabolic parameters, or gut microbiome composition. Discussion: In obese and overweight cats, activation of the FGF21 pathway can safely induce weight loss with trends to improve liver lipid content. This exploratory study is the first to evaluate the FGF21 pathway in cats. Manipulation of the FGF21 pathway has promising potential as a therapeutic for feline obesity. Further studies are needed to see if FGF21-pathway manipulation can be therapeutic for feline hepatic lipidosis.

6.
J Nutr Biochem ; 112: 109174, 2023 02.
Article En | MEDLINE | ID: mdl-36280127

Nonalcoholic fatty liver disease (NAFLD), which ranges from simple steatosis to nonalcoholic steatohepatitis (NASH), is the most common chronic liver disease. Yet, the molecular mechanisms for the progression of steatosis to NASH remain largely undiscovered. Thus, there is a need for identifying specific gene and pathway changes that drive the progression of NAFLD. This study uses high-fat Western diet (HFWD) together with liquid sugar [fructose and sucrose (F/S)] feeding for 12 weeks in mice to induce obesity and examine hepatic transcriptomic changes that occur in NAFLD progression. The combination of a HFWD+F/S in the drinking water exacerbated HFWD-induced obesity, hyperinsulinemia, hyperglycemia, hepatic steatosis, inflammation, and human and murine fibrosis gene set enrichment that is consistent with progression to NASH. RNAseq analysis revealed differentially expressed genes (DEGs) associated with HFWD and HFWD+F/S dietary treatments compared to Chow-fed mice. However, liquid sugar consumption resulted in a unique set of hepatic DEGs in HFWD+F/S-fed mice, which were enriched in the complement and coagulation cascades using network and biological analysis. Cluster analysis identified Orosomucoid (ORM) as a HFWD+F/S upregulated complement and coagulation cascades gene that was also upregulated in hepatocytes treated with TNFα or free fatty acids in combination with hypoxia. ORM expression was found to correlate with NAFLD parameters in obese mice. Taken together, this study examined key genes, biological processes, and pathway changes in the liver of HFWD+F/S mice in an effort to provide insight into the molecular basis for which the addition of liquid sugar promotes the progression of NAFLD.


Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Transcriptome , Fructose/adverse effects , Fructose/metabolism , Sucrose/adverse effects , Sucrose/metabolism , Diet, Western/adverse effects , Liver/metabolism , Diet, High-Fat/adverse effects , Obesity/metabolism , Mice, Inbred C57BL , Disease Models, Animal
7.
J Vet Intern Med ; 36(6): 1974-1980, 2022 Nov.
Article En | MEDLINE | ID: mdl-36181381

BACKGROUND: Fecal specimens are critical for disease screening, diagnosis, and gut microbiome research. For domestic cats, lubricants are often necessary to obtain a sufficient quantity of sample. However, the effect of lubrication on feline microbiome analysis has not been assessed. OBJECTIVES: To evaluate if lubrication using mineral oil during cat feces sample collection affects the DNA extraction, metagenomic sequencing yield, and the microbial composition and diversity in subsequent gut microbiome analyses. ANIMALS: Eight 6-year-old male, neutered, domestic short-haired cats housed in a research facility. METHODS: Cohort study. The gut microbiomes were investigated for fecal sample collection with and without lubrication using whole-genome shotgun metagenomic sequencing. RESULTS: Fecal specimens were collected using a fecal loop under sedation without lubrication and with mineral oil lubrication. There were no significant differences between the 2 groups in the microbial DNA yield in ng/mg fecal sample (75.75 [25.8-125.7] vs 60.72 [33.49-87.95], P = .95), metagenomic sequencing yield in Gbp (10.31 [6.29-14.32] vs 13.53 [12.04-15.02], P = .2), proportion of host contamination (0.1 [0.02-0.18] vs 0.15 [0-0.3], P = .84), relative taxonomy abundance (P > .8), or the number of microbial genes covered (408 132 [341 556-474 708] vs 425 697 [358 505-492 889], P = .31). CONCLUSIONS AND CLINICAL IMPORTANCE: Fecal sampling with mineral oil lubrication did not change the microbial DNA extraction yield, metagenomic sequencing yield, level of host contamination, the microbial composition and diversity in subsequent gut microbiome analyses. Here we reported a proven cat-friendly protocol for fecal sample collection in clinical and research setting for gut microbiome analyses.


Microbiota , Mineral Oil , Male , Cats , Animals , Lubricants , Cohort Studies , Feces , DNA , RNA, Ribosomal, 16S/genetics
8.
Microbiol Spectr ; 10(3): e0083722, 2022 06 29.
Article En | MEDLINE | ID: mdl-35467389

Overweight and obesity are growing health problems in domestic cats, increasing the risks of insulin resistance, lipid dyscrasias, neoplasia, cardiovascular disease, and decreasing longevity. The signature of obesity in the feline gut microbiota has not been studied at the whole-genome metagenomic level. We performed whole-genome shotgun metagenomic sequencing in the fecal samples of eight overweight/obese and eight normal cats housed in the same research environment. We obtained 271 Gbp of sequences and generated a 961-Mbp de novo reference contig assembly, with 1.14 million annotated microbial genes. In the obese cat microbiome, we discovered a significant reduction in microbial diversity (P < 0.01) and Firmicutes abundance (P = 0.005), as well as decreased Firmicutes/Bacteroidetes ratios (P = 0.02), which is the inverse of obese human/mouse microbiota. Linear discriminant analysis and quantitative PCR (qPCR) validation revealed significant increases of Bifidobacterium sp., Olsenella provencensis, Dialister sp.CAG:486, and Campylobacter upsaliensis as the hallmark of obese microbiota among 400 enriched species, whereas 1,525 bacterial species have decreased abundance in the obese microbiome. Phascolarctobacterium succinatutens and an uncharacterized Erysipelotrichaceae bacterium are highly abundant (>0.05%) in the normal gut with over 400-fold depletion in the obese microbiome. Fatty acid synthesis-related pathways are significantly overrepresented in the obese compared with the normal cat microbiome. In conclusion, we discovered dramatically decreased microbial diversity in obese cat gut microbiota, suggesting potential dysbiosis. A panel of seven significantly altered, highly abundant species can serve as a microbiome indicator of obesity. Our findings in the obese cat microbiome composition, abundance, and functional capacities provide new insights into feline obesity. IMPORTANCE Obesity affects around 45% of domestic cats, and licensed drugs for treating feline obesity are lacking. Physical exercise and calorie restrictions are commonly used for weight loss but with limited efficacy. Through comprehensive analyses of normal and obese cat gut bacteria flora, we identified dramatic shifts in the obese gut microbiome, including four bacterial species significantly enriched and two species depleted in the obese cats. The key bacterial community and functional capacity alterations discovered from this study will inform new weight management strategies for obese cats, such as evaluations of specific diet formulas that alter the microbiome composition, and the development of prebiotics and probiotics that promote the increase of beneficial species and the depletion of obesity-associated species. Interestingly, these bacteria identified in our study were also reported to affect the weight loss success in human patients, suggesting translational potential in human obesity.


Gastrointestinal Microbiome , Animals , Bacteria/genetics , Cats , Feces/microbiology , Gastrointestinal Microbiome/genetics , Metagenome , Mice , Obesity/genetics , Obesity/microbiology , Obesity/veterinary , Overweight/genetics , Weight Loss/genetics
9.
PLoS Genet ; 16(12): e1008671, 2020 12.
Article En | MEDLINE | ID: mdl-33290415

Cerebral cortical size and organization are critical features of neurodevelopment and human evolution, for which genetic investigation in model organisms can provide insight into developmental mechanisms and the causes of cerebral malformations. However, some abnormalities in cerebral cortical proliferation and folding are challenging to study in laboratory mice due to the absence of gyri and sulci in rodents. We report an autosomal recessive allele in domestic cats associated with impaired cerebral cortical expansion and folding, giving rise to a smooth, lissencephalic brain, and that appears to be caused by homozygosity for a frameshift in PEA15 (phosphoprotein expressed in astrocytes-15). Notably, previous studies of a Pea15 targeted mutation in mice did not reveal structural brain abnormalities. Affected cats, however, present with a non-progressive hypermetric gait and tremors, develop dissociative behavioral defects and aggression with age, and exhibit profound malformation of the cerebrum, with a 45% average decrease in overall brain weight, and reduction or absence of the ectosylvian, sylvian and anterior cingulate gyrus. Histologically, the cerebral cortical layers are disorganized, there is substantial loss of white matter in tracts such as the corona radiata and internal capsule, but the cerebellum is relatively spared. RNA-seq and immunohistochemical analysis reveal astrocytosis. Fibroblasts cultured from affected cats exhibit increased TNFα-mediated apoptosis, and increased FGFb-induced proliferation, consistent with previous studies implicating PEA15 as an intracellular adapter protein, and suggesting an underlying pathophysiology in which increased death of neurons accompanied by increased proliferation of astrocytes gives rise to abnormal organization of neuronal layers and loss of white matter. Taken together, our work points to a new role for PEA15 in development of a complex cerebral cortex that is only apparent in gyrencephalic species.


Apoptosis Regulatory Proteins/genetics , Brain Diseases/veterinary , Cat Diseases/genetics , Cerebral Cortex/metabolism , Loss of Function Mutation , Phosphoproteins/genetics , Animals , Apoptosis Regulatory Proteins/metabolism , Astrocytes/cytology , Astrocytes/metabolism , Brain Diseases/genetics , Brain Diseases/pathology , Cat Diseases/pathology , Cats , Cerebral Cortex/cytology , Cerebral Cortex/growth & development , Neurogenesis , Phosphoproteins/metabolism
10.
Adipocyte ; 9(1): 567-575, 2020 12.
Article En | MEDLINE | ID: mdl-32954932

The distinction between biological processes of adipose tissue expansion is crucial to understanding metabolic derangements, but a robust method for quantifying adipocyte size has yet to be standardized. Here, we compared three methods for histological analysis in situ: one conventional approach using individual micrographs acquired by digital camera, and two with whole-slide image analysis pipelines involving proprietary (Visiopharm) and open-source software (QuPath with a novel ImageJ plugin). We found that micrograph analysis identified 10-40 times fewer adipocytes than whole-slide methods, and this small sample size resulted in high variances that could lead to statistical errors. The agreement of the micrograph method to measure adipocyte area with each of the two whole-slide methods was substantially less (R2 of 0.6644 and 0.7125) than between the two whole-slide methods (R2 of 0.9402). These inconsistencies were more pronounced in samples from high-fat diet fed mice. While the use of proprietary software resulted in the highest adipocyte count, the lower cost, ease of use, and minimal variances of the open-source software provided a distinct advantage for measuring the number and size of adipocytes. In conclusion, we recommend whole-slide image analysis methods to consistently measure adipocyte area and avoid unintentional errors due to small sample sizes.


Adipocytes/pathology , Adipose Tissue/pathology , Histocytochemistry/methods , Image Processing, Computer-Assisted/methods , Adipocytes/metabolism , Adipose Tissue/metabolism , Animals , Cell Size , Diet, High-Fat , Hypertrophy , Male , Mice , Microscopy , Obesity/metabolism , Obesity/pathology
11.
Nutrients ; 12(8)2020 Aug 13.
Article En | MEDLINE | ID: mdl-32823541

Obesity is an immunometabolic disease associated with chronic inflammation and the dysregulation of pro- and anti-inflammatory cytokines. One hallmark of obesity is reduced concentrations of the anti-inflammatory adipokine, adiponectin. Pharmacologic doses of niacin produce multiple metabolic benefits, including attenuating high-fat diet (HFD)-induced adipose tissue inflammation and increasing adiponectin concentrations. To determine if adiponectin mediates the anti-inflammatory effects of niacin, male C57BL/6J (WT) and adiponectin null (Adipoq-/-) mice were maintained on a low-fat diet (LFD) or HFD for 6 weeks, before being administered either vehicle or niacin (360 mg/kg/day) for 5 weeks. HFD-fed mice had increased expression of genes associated with macrophage recruitment (Ccl2) and number (Cd68), and increased crown-like structure (CLS) number in adipose tissue. While niacin attenuated Ccl2 expression, there were no effects on Cd68 or CLS number. The absence of adiponectin did not hinder the ability of niacin to reduce Ccl2 expression. HFD feeding increased gene expression of inflammatory markers in the adipose tissue of WT and Adipoq-/- mice. While niacin tended to decrease the expression of inflammatory markers in WT mice, niacin increased their expression in HFD-fed Adipoq-/- mice. Therefore, our results indicate that the absence of adiponectin alters the effects of niacin on markers of adipose tissue inflammation in HFD-fed mice, suggesting that the effects of niacin on tissue cytokines may involve adiponectin.


Adiponectin/deficiency , Adipose Tissue/metabolism , Anti-Inflammatory Agents/pharmacology , Gene Expression/drug effects , Niacin/pharmacology , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Chemokine CCL2/metabolism , Cytokines/metabolism , Diet, Fat-Restricted , Diet, High-Fat , Disease Models, Animal , Inflammation , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism
12.
Physiol Behav ; 223: 112905, 2020 09 01.
Article En | MEDLINE | ID: mdl-32446780

Obesity is a major public health concern and overconsumption of unhealthy fats and sugary beverages are contributing factors. Time-restricted feeding can reduce obesity-associated pathophysiological parameters by limiting the time of food consumption; however, the effects of time-restricted sugary water consumption are unknown. To examine whether liquid calorie restriction impacts metabolic health, we measured metabolic parameters in mice provided liquid sugar at various intervals during the active phase. The control (Con) group received tap water, the adlibitum fructose-glucose (ALFG) group received ad libitumsugar water and the early fructose-glucose (EFG) and late fructose-glucose (LFG) groups received liquid sugar during the first and last six hours of the active period, respectively. Each group was given free access to chow. Zeitgeber time (ZT) notation was used to set all experimental time points to lights on as ZT 0. The ALFG group exhibited elevated body and adipose tissue weights compared to the other groups and increased hepatic steatosis compared to the Con group. The ALFG group consumed more calories than the other groups during ZT 6-11, indicating that this window may be critical in the promotion of weight gain from liquid sugar consumption. The EFG group exhibited higher levels of energy expenditure than the Con and LFG groups during the first half of the active period (ZT 12-17); however, there was no difference among the groups during the second half of the active period (ZT18-23). In contrast, the EFG group exhibited lower respiratory exchange ratio than other groups during the inactive period as well as the second half of the active period, indicating that the EFG group had greater metabolic flexibility and utilized lipids when carbohydrates from liquid sugar were not available. Additionally, the EFG group was more insulin tolerant than the ALFG and Con groups. Our results support the hypothesis that time-restricted liquid calorie restriction aids in reducing the detrimental metabolic effects of sugary drink consumption.


Fatty Liver , Sugars , Animals , Dietary Sucrose , Fructose , Mice , Obesity
13.
Article En | MEDLINE | ID: mdl-32404278

Nonalcoholic fatty liver disease (NAFLD) is a very common disorder affecting between 20 and 30% of adults in the United States. However, there is no effective pharmacotherapy for treating NAFLD. Niacin, a water-soluble vitamin (B3), at pharmacological doses, decreases hepatic triglyceride (TG) content in NAFLD through inhibition of diacylglycerol acyltransferase 2, a key enzyme that catalyzes the final step in TG synthesis. Alternatively, some studies indicate that niacin induces fatty liver in high-fat diet (HFD)-fed rats. Therefore, in this study we investigated whether niacin is beneficial in treating NAFLD in two strains of mice, C57BL/6J (B6) and B6129SF2/J (B6129) mice, with 20 weeks of HFD feeding. Niacin treatment was started from week 5 until the end of the study. Niacin treatment increased normalized liver weight, hepatic TG content and NAFLD score in HFD-fed B6129 mice but had no impact on B6 mice. Metabolomics analysis revealed that in B6129 mice, 4-hydroxyphenylpyruvic acid (4-HPP), which is associated with fatty acid oxidation, did not change with HFD feeding but significantly decreased with niacin treatment. Lipidomics analysis discovered that the abundance of phosphocholine (PC), which is critical for very low-density lipoprotein (VLDL)-TG production and secretion, was decreased in HFD-fed B6129 with niacin treatment. In conclusion, niacin had no impact on diet-induced NAFLD development in B6 mice but potentiated hepatic steatosis in HFD-fed B6129 mice due to impaired fatty acid oxidation and decreased VLDL-TG production and secretion.


Diet, High-Fat/adverse effects , Hypolipidemic Agents/pharmacology , Niacin/pharmacology , Non-alcoholic Fatty Liver Disease , Animals , Insulin Resistance , Lipid Metabolism/drug effects , Lipoproteins, VLDL/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Obesity/blood , Obesity/metabolism , Obesity/pathology , Triglycerides/blood , Triglycerides/metabolism
14.
Obesity (Silver Spring) ; 27(8): 1305-1313, 2019 08.
Article En | MEDLINE | ID: mdl-31207147

OBJECTIVE: Methionine restriction (MR) decreases inflammation and improves markers of metabolic disease in rodents. MR also increases hepatic and circulating concentrations of fibroblast growth factor 21 (FGF21). Emerging evidence has suggested that FGF21 exerts anti-inflammatory effects. The purpose of this study was to determine the role of FGF21 in mediating the MR-induced reduction in inflammation. METHODS: Wild-type and Fgf21-/- mice were fed a high-fat (HF) control or HF-MR diet for 8 weeks. In a separate experiment, mice were fed a HF diet (HFD) for 10 weeks. Vehicle or recombinant FGF21 (13.6 µg/d) was administered via osmotic minipump for an additional 2 weeks. Inflammation and metabolic parameters were measured. RESULTS: Fgf21-/- mice were more susceptible to HFD-induced inflammation, and MR reduced inflammation in white adipose tissue (WAT) and liver of Fgf21-/- mice. MR downregulated activity of signal transducer and activator of transcription 3 in WAT of both genotypes. FGF21 administration reduced hepatic lipids and blood glucose concentrations. However, there was little effect of FGF21 on inflammatory gene expression in liver or adipose tissue or circulating cytokines. CONCLUSIONS: MR reduces inflammation independent of FGF21 action. Endogenous FGF21 is important to protect against the development of HFD-induced inflammation in liver and WAT, yet administration of low-dose FGF21 has little effect on markers of inflammation.


Fibroblast Growth Factors/pharmacology , Inflammation/metabolism , Methionine/metabolism , Adipose Tissue/metabolism , Adipose Tissue, White/drug effects , Animals , Diet, High-Fat/adverse effects , Gene Expression , Inflammation/etiology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL
15.
Front Vet Sci ; 6: 506, 2019.
Article En | MEDLINE | ID: mdl-32010716

Introduction: Hyperbaric oxygen therapy (HBOT) involves breathing 100% oxygen in a specialized compression chamber leading to hyperoxia. This treatment modality is associated with anti-inflammatory, antioxidant, and healing properties in people and laboratory animals. However, there are relatively few reports that evaluate the effects of HBOT in companion animals. The goal of this study was to investigate the physiological effects of HBOT on surgically induced systemic inflammation and oxidation in dogs. Material and Methods: Twelve healthy female beagle dogs were spayed and randomized into control and HBOT groups (n = 6). Both groups received conventional post-ovariohysterectomy therapy, and the HBOT group received two hyperbaric treatments at 2.0 atmosphere of absolute pressure and 100% oxygen for 35 min, 6 and 18 h after surgery. Blood samples were collected 3 h prior to ovariohysterectomy, 6, 18, and 30 h after surgery, prior to HBOT when applicable. Inflammatory biomarkers, including C-reactive protein, circulating cytokines, and changes in iron homeostasis were evaluated at each time point to determine the effects of surgery and HBOT on inflammation. Similarly, serum total oxidant status and total antioxidant status were measured to assess the oxidative stress. Pain and incision scores were recorded and compared between groups. Results: Following ovariohysterectomy, all dogs had significantly increased serum concentrations of C-reactive protein, KC-like, IL-6, and increased unsaturated iron-binding capacity compared to their pre-surgical values (p < 0.02), while serum iron, total iron-binding capacity and transferrin saturation were significantly decreased after surgery (p < 0.02). There was no significant difference between the control group and the HBOT group for any of the variables. There were no overt adverse effects in the HBOT group. Conclusion: This is the first prospective randomized controlled study to investigate the effects of HBOT on surgically induced systemic inflammation in dogs. While elective ovariohysterectomy resulted in mild inflammation, the described HBOT protocol portrayed no outward adverse effect and did not induce any detectable pro-inflammatory, anti-inflammatory, or antioxidant effects. Additional investigation is required to identify objective markers to quantify the response to HBOT and determine its role as an adjunctive therapy in dogs with more severe, complicated or chronic diseases.

16.
Metabolism ; 82: 1-13, 2018 05.
Article En | MEDLINE | ID: mdl-29253490

BACKGROUND: Obesity is a major public health concern that can result from diets high in fat and sugar, including sugar sweetened beverages. A proposed treatment for dietary-induced obesity is time-restricted feeding (TRF), which restricts consumption of food to specific times of the 24-hour cycle. Although TRF shows great promise to prevent obesity and the development of chronic disease, the effects of TRF to reverse metabolic changes and the development of NAFLD in animal models of a Western diet with sugary water consumption is not known. OBJECTIVE: The objective of the current study was to evaluate the role of TRF in the treatment of obesity and NAFLD through examination of changes in metabolic and histopathologic parameters. METHODS: To better understand the role of TRF in the treatment of obesity and NAFLD, we investigated the metabolic phenotype and NAFLD parameters in a mouse model of NAFLD in which obesity and liver steatosis are induced by a Western Diet (WD): a high-fat diet of lard, milkfat and Crisco with sugary drinking water. Mice were subjected to a short-term (4-weeks) and long-term (10-weeks) TRF in which food was restricted to 9h at night. RESULTS: Prior to TRF treatment, the WD mice had increased body mass, and exhibited less activity, and higher average daytime energy expenditure (EE) than chow fed mice. Approximately 4- and 10-weeks following TFR treatment, WD-TRF had moderate but not statistically significant weight loss compared to WD-ad libitum (WD-AL) mice. There was a modest but significant reduction in the inguinal adipose tissue weight in both WD-TRF groups compared to the WD-AL groups; however, there was no difference in epididymal and retroperitoneal adipose tissue mass or adipocyte size distribution. In contrast, the diet-induced increase in normalized liver tissue weight, hepatic triglyceride, and NAFLD score was partially abrogated in the 4-week WD-TRF mice, while systemic insulin resistance was partially abrogated and glucose intolerance was completely abrogated in the 10-week WD-TRF mice. Importantly, WD-induced metabolic dysfunction (substrate utilization, energy expenditure, and activity) was partially abrogated by 4- and 10-week TRF. CONCLUSIONS: Our results support the hypothesis that TRF aids in reducing the detrimental metabolic effects of consuming a WD with sugary drinking water but does not ameliorate obesity.


Energy Metabolism/physiology , Fatty Liver/metabolism , Food Deprivation/physiology , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Animals , Diet, Western , Disease Models, Animal , Fatty Liver/pathology , Insulin Resistance/physiology , Liver/metabolism , Liver/pathology , Male , Mice , Obesity/pathology
17.
Metabolism ; 65(2): 102-13, 2016 Feb.
Article En | MEDLINE | ID: mdl-26773933

The hydroxycarboxylic acid receptors (HCA1-3) are a family of G-protein-coupled receptors that are critical for sensing endogenous intermediates of metabolism. All three receptors are predominantly expressed on adipocytes and mediate anti-lipolytic effects. In addition to adipocytes, HCA2 is highly expressed on immune cells, including macrophages, monocytes, neutrophils and dermal dendritic cells, among other cell types. The endogenous ligand for HCA2 is beta-hydroxybutyrate (ß-OHB), a ketone body produced by the liver through ß-oxidation when an individual is in a negative energy balance. Recent studies demonstrate that HCA2 mediates profound anti-inflammatory effects in a variety of tissues, indicating that HCA2 may be an important therapeutic target for treating inflammatory disease processes. This review summarizes the roles of HCA2 on inflammation in a number of tissues and clinical states.


Inflammation/prevention & control , Receptors, G-Protein-Coupled/physiology , Receptors, Nicotinic/physiology , Animals , Atherosclerosis/prevention & control , Colitis/prevention & control , Diabetic Retinopathy/prevention & control , Humans , Mice , Neoplasms/prevention & control , Neurodegenerative Diseases/prevention & control , Niacin/therapeutic use , Obesity/prevention & control , Receptors, G-Protein-Coupled/analysis , Receptors, Nicotinic/analysis
18.
Am J Physiol Endocrinol Metab ; 310(6): E418-39, 2016 Mar 15.
Article En | MEDLINE | ID: mdl-26670487

nonalcoholic fatty liver disease (NAFLD), an obesity and insulin resistance associated clinical condition - ranges from simple steatosis to nonalcoholic steatohepatitis. To model the human condition, a high-fat Western diet that includes liquid sugar consumption has been used in mice. Even though liver pathophysiology has been well characterized in the model, little is known about the metabolic phenotype (e.g., energy expenditure, activity, or food intake). Furthermore, whether the consumption of liquid sugar exacerbates the development of glucose intolerance, insulin resistance, and adipose tissue dysfunction in the model is currently in question. In our study, a high-fat Western diet (HFWD) with liquid sugar [fructose and sucrose (F/S)] induced acute hyperphagia above that observed in HFWD-fed mice, yet without changes in energy expenditure. Liquid sugar (F/S) exacerbated HFWD-induced glucose intolerance and insulin resistance and impaired the storage capacity of epididymal white adipose tissue (eWAT). Hepatic TG, plasma alanine aminotransferase, and normalized liver weight were significantly increased only in HFWD+F/S-fed mice. HFWD+F/S also resulted in increased hepatic fibrosis and elevated collagen 1a2, collagen 3a1, and TGFß gene expression. Furthermore, HWFD+F/S-fed mice developed more profound eWAT inflammation characterized by adipocyte hypertrophy, macrophage infiltration, a dramatic increase in crown-like structures, and upregulated proinflammatory gene expression. An early hypoxia response in the eWAT led to reduced vascularization and increased fibrosis gene expression in the HFWD+F/S-fed mice. Our results demonstrate that sugary water consumption induces acute hyperphagia, limits adipose tissue expansion, and exacerbates glucose intolerance and insulin resistance, which are associated with NAFLD progression.


Adipose Tissue, White/metabolism , Diet, High-Fat , Diet, Western , Liver/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Obesity/genetics , Adipocytes, White/pathology , Alanine Transaminase/metabolism , Animals , Collagen Type I/genetics , Collagen Type III/genetics , Dietary Sucrose , Disease Models, Animal , Fibrosis , Fructose , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Hyperphagia , Immunoblotting , Insulin Resistance , Liver/pathology , Macrophages , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Organ Size , Phenotype , Proto-Oncogene Proteins c-akt , Transcriptome , Transforming Growth Factor beta/genetics , Triglycerides/metabolism
19.
Vet Clin Pathol ; 43(4): 505-12, 2014 Dec.
Article En | MEDLINE | ID: mdl-25138384

BACKGROUND: Evaluation of the bone marrow is needed for complete staging in dogs with multicentric large-cell lymphoma, but is often omitted in clinical practice. OBJECTIVES: The objective was to determine if routine peripheral blood findings, including microscopic evaluation of blood smears, can predict the presence of bone marrow involvement in dogs with lymphoma. METHODS: Hematologic data including evaluation of blood smears and bone marrow aspirates from 107 dogs newly diagnosed with large-cell lymphoma were retrospectively evaluated. Neoplastic lymphocytes were identified based on cell size, nuclear size, chromatin pattern, and the presence of nucleoli. Positive specimens were defined as having ≥ 10% neoplastic lymphocytes. Two groups were established based on the presence or absence of lymphoma in the bone marrow. Variables (positive blood smear, HCT, platelet count, and total and differential WBC counts) were evaluated to determine if they were predictive of bone marrow involvement using univariate and multivariate logistic models. RESULTS: Thrombocytopenia and the presence of > 10% neoplastic lymphocytes on blood smears were identified as significant variables for predicting the presence of bone marrow involvement. When considered independently, either a positive blood smear or thrombocytopenia had low sensitivity (60%) and moderate specificity (89% and 87%, respectively). Sensitivity increased when these variables were evaluated together (80%). CONCLUSIONS: In dogs with multicentric large-cell lymphoma, thrombocytopenia or the presence of neoplastic lymphocytes in circulation is suggestive of bone marrow involvement, but not definitive. Normal peripheral blood findings do not exclude the possibility of lymphoma in the bone marrow.


Bone Marrow Diseases/veterinary , Dog Diseases/blood , Lymphoma/veterinary , Animals , Bone Marrow Diseases/blood , Bone Marrow Diseases/diagnosis , Dog Diseases/diagnosis , Dogs , Female , Leukocyte Count/veterinary , Lymphoma/blood , Lymphoma/diagnosis , Male , Platelet Count/veterinary , Predictive Value of Tests
20.
Vet Immunol Immunopathol ; 157(3-4): 131-41, 2014 Feb 15.
Article En | MEDLINE | ID: mdl-24368085

To study the canine immune system we generated a mouse model engrafted with canine lymphocytes using NOD SCID IL2R common gamma chain -/- (NSG) mice as recipients (Ca-PBL-SCID). Engraftment of canine peripheral blood lymphocytes (PBLs) was determined post-injection with 10(7) peripheral blood mononuclear cells (PBMCs) into irradiated NSG mice using flow cytometry and fluorescently labeled antibodies specific to canine helper T cells (CD45(+) CD4(+)), cytotoxic lymphocytes (CD45(+) CD8(+)), regulatory T cells (CD45(+) CD4(+) Foxp3(+)), and B cells (CD45(+) Ig(+) CD21lo). Canine CD45(+) lymphocytes were detectable as early as day 1 in the peritoneal cavity, and beginning at 9 days in the blood, bone marrow, and spleen. CD4(+) T cells, of which Foxp-3(+) CD25hi cells constituted a minor percentage, were the predominant lymphocyte population at 9 days post engraftment contrasting with increasing proportions of CD8(+) CTL's and Ig(+) B cells beginning at 16 days. Canine immunoglobulin was initially detected in the serum of Ca-PBL-SCID mice at 9 days post-engraftment and peaked in concentration at day 36. From day 28 to 52 post-engraftment 30% of the Ca-PBL-SCID mice became markedly anemic and thrombocytopenic, yet gross and histopathologic examination of bone marrow, kidneys, spleen, liver, and intestine revealed no obvious lesions. Blood smear evaluation revealed agglutination of mature red blood cells, reticulocytes and a regenerative anemia. These findings demonstrate that NSG mice are capable of engraftment of canine PBLs yet develop graft versus host disease similar to Hu-PBL-SCID mice.


Dogs/immunology , Interleukin Receptor Common gamma Subunit/physiology , Lymphocytes/immunology , Anemia, Hemolytic/etiology , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Graft vs Host Disease/immunology , Heterografts , Mice , Mice, Inbred NOD , Mice, SCID , Radiation Tolerance
...