Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Pathol Oncol Res ; 30: 1611586, 2024.
Article En | MEDLINE | ID: mdl-38689823

Mounting evidence suggests that the immune landscape within prostate tumors influences progression, metastasis, treatment response, and patient outcomes. In this study, we investigated the spatial density of innate immune cell populations within NOD.SCID orthotopic prostate cancer xenografts following microinjection of human DU145 prostate cancer cells. Our laboratory has previously developed nanoscale liposomes that attach to leukocytes via conjugated E-selectin (ES) and kill cancer cells via TNF-related apoptosis inducing ligand (TRAIL). Immunohistochemistry (IHC) staining was performed on tumor samples to identify and quantify leukocyte infiltration for different periods of tumor growth and E-selectin/TRAIL (EST) liposome treatments. We examined the spatial-temporal dynamics of three different immune cell types infiltrating tumors using QuPath image analysis software. IHC staining revealed that F4/80+ tumor-associated macrophages (TAMs) were the most abundant immune cells in all groups, irrespective of time or treatment. The density of TAMs decreased over the course of tumor growth and decreased in response to EST liposome treatments. Intratumoral versus marginal analysis showed a greater presence of TAMs in the marginal regions at 3 weeks of tumor growth which became more evenly distributed over time and in tumors treated with EST liposomes. TUNEL staining indicated that EST liposomes significantly increased cell apoptosis in treated tumors. Additionally, confocal microscopy identified liposome-coated TAMs in both the core and periphery of tumors, highlighting the ability of liposomes to infiltrate tumors by "piggybacking" on macrophages. The results of this study indicate that TAMs represent the majority of innate immune cells within NOD.SCID orthotopic prostate tumors, and spatial density varies widely as a function of tumor size, duration of tumor growth, and treatment of EST liposomes.


Liposomes , Mice, Inbred NOD , Mice, SCID , Prostatic Neoplasms , Tumor-Associated Macrophages , Animals , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/immunology , Mice , Humans , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology , Xenograft Model Antitumor Assays , Apoptosis , Disease Models, Animal , TNF-Related Apoptosis-Inducing Ligand/metabolism , E-Selectin/metabolism , Tumor Microenvironment/immunology
2.
PLoS One ; 16(3): e0246733, 2021.
Article En | MEDLINE | ID: mdl-33661931

Three-dimensional spheroid cultures have been shown to better physiologically mimic the cell-cell and cell-matrix interactions that occur in solid tumors more than traditional 2D cell cultures. One challenge in spheroid production is forming and maintaining spheroids of uniform size. Here, we developed uniform, high-throughput, multicellular spheroids that self-assemble using microwell plates. DU145 and PC3 cells were cultured as 2D monolayers and 3D spheroids to compare sensitization of TRAIL-resistance cancer cells to TRAIL mediated apoptosis via chemotherapy based on dimensionality. Monocultured monolayers and spheroids were treated with soluble TRAIL alone (24 hr), DTX or CBZ alone (24 hr), or a combination of taxane and TRAIL (24 + 24 hr) to determine the effectiveness of taxanes as TRAIL sensitizers. Upon treatment with soluble TRAIL or taxanes solely, monolayer cells and spheroids exhibited no significant reduction in cell viability compared to the control, indicating that both cell lines are resistant to TRAIL and taxane alone in 2D and 3D. Pretreatment with CBZ or DTX followed by TRAIL synergistically amplified apoptosis in 2D and 3D DU145 cell cultures. PC3 spheroids were more resistant to the combination therapy, displaying a more additive effect in the DTX + TRAIL group compared to 2D. There was a downregulation of DR4/5 expression in spheroid form compared to monolayers in each cell line. Additionally, normal fibroblasts (NFs) and cancer-associated fibroblasts (CAFs) were cocultured with both PCa cell lines as spheroids to determine if CAFs confer additional resistance to chemotherapy. We determined that co-cultured spheroids show similar drug resistance to monocultured spheroids when treated with taxane plus TRAIL treatment. Collectively, these findings suggest how the third dimension and cocultures of different cell types effect the sensitization of androgen-independent prostate cancer cells to TRAIL, suggesting therapeutic targets that could overcome TRAIL-resistance in metastatic castration-resistant prostate cancer (mCRPC).


Bridged-Ring Compounds/pharmacology , Drug Resistance, Neoplasm/drug effects , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Taxoids/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Humans , Male
3.
Mol Cancer Ther ; 20(5): 833-845, 2021 05.
Article En | MEDLINE | ID: mdl-33632873

Docetaxel and cabazitaxel are guideline-chemotherapy treatments for metastatic castration-resistant prostate cancer (mCRPC), which comprises the majority of prostate cancer deaths. TNF-related apoptosis inducing ligand (TRAIL) is an anticancer agent that is selectively cytotoxic to cancer cells; however, many human cancers are resistant to TRAIL. In this study, we sensitized androgen-independent and TRAIL-resistant prostate cancer cells to TRAIL-mediated apoptosis via taxane therapy and examined the mechanism of sensitization. DU145 and PC3 cells displayed no significant reduction in cell viability when treated with soluble TRAIL, docetaxel, or cabazitaxel alone indicating that both cell lines are resistant to TRAIL and taxanes individually. Taxane and TRAIL combination synergistically amplified apoptosis strongly suggesting that taxanes sensitize prostate cancer cells to TRAIL. A Jun N-terminal kinases (JNK) inhibitor inhibited apoptosis in treated cells and significantly reduced death receptor expression indicating JNK activation by ER stress sensitizes PCa cells to TRAIL-induced apoptosis by upregulating DR4/DR5 expression. In addition, suppression of C/EBP homologous protein (CHOP) reduced TRAIL sensitization in both cell lines indicating that ER stress-related apoptosis is mediated, in part, by CHOP. Cytochrome c knockdown showed a significant decrease in sensitivity in PC3 cells, but not in Bax-deficient DU145 cells. A computational model was used to simulate apoptosis for cells treated with taxane and TRAIL therapy as demonstrated in in vitro experiments. Pretreatment with taxanes sensitized cells to apoptosis induced by TRAIL-mediated apoptosis, demonstrating that combining TRAIL with ER stress inducers is a promising therapy to reverse TRAIL resistance to treat mCRPC.


Endoplasmic Reticulum Stress/drug effects , Prostatic Neoplasms/drug therapy , RNA, Small Interfering/metabolism , TNF-Related Apoptosis-Inducing Ligand/metabolism , Taxoids/therapeutic use , Apoptosis , Cell Line, Tumor , Humans , Male , Taxoids/pharmacology , Transfection
4.
Microvasc Res ; 118: 144-154, 2018 07.
Article En | MEDLINE | ID: mdl-29601874

The objective of this study was to isolate the impact of hydrodynamics on selectin-mediated cell rolling in branched microvessels. Significant advancements have been made in furthering the understanding of complex interactions between biochemical and physical factors in the inflammatory cascade in simplified planar geometries. However, few studies have sought to quantify the effects of branched configurations and to isolate the effects of associated fluid forces. Experimental techniques were developed to perform in vitro adhesion experiments in Y-shaped micro-slides. The micro-slides were coated with P-selectin and microspheres coated with Sialyl-Lewisx were observed as they rolled in the chambers at different wall shear stresses. Study results revealed that microsphere rolling velocities and rolling flux were lowest in regions closest to the apex of a junctional region and were dependent on both branch angle and wall shear stress. The regions closest to the junctional region were shown to have low bulk flow velocities and shear stresses using computational fluid dynamics (CFD) modeling. Collectively, the study demonstrates that despite the presence of a uniform coating of P-selectin, hydrodynamic factors associated with the chamber geometry yield non-uniform effects on particle behavior. These findings could explain why cells have been observed to preferentially adhere or transmigrate near junctional regions. Future characterization of inflammatory processes in microvascular network configurations is therefore crucial for furthering our fundamental understanding of inflammation.


Cell Adhesion , Inflammation/metabolism , Leukocyte Rolling , Leukocytes/metabolism , Models, Cardiovascular , P-Selectin/metabolism , Venules/metabolism , Animals , Humans , Hydrodynamics , Inflammation/pathology , Lewis X Antigen/metabolism , Microspheres , Sialyl Lewis X Antigen , Signal Transduction , Venules/pathology
...