Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Tree Physiol ; 15(6): 399-404, 1995 Jun.
Article in English | MEDLINE | ID: mdl-14965949

ABSTRACT

Seedlings of Leptospermum scoparium J.R. et G. Forst (manuka) originating from seed from a low altitude coastal site (Auckland) and from a high altitude inland site (Desert Road) were grown for 96 days in four controlled environments to compare the relationship between growth temperature and frost hardening. Day/night temperature treatments were 12/6, 12/3, 12/0 and 12/-3 degrees C. Frost hardiness was determined at 14-day intervals by exposing whole seedlings to temperatures ranging from -2 to -8 degrees C. Frost damage differed significantly between the two populations: Desert Road seedlings were less affected than Auckland seedlings. At all growth temperatures, the time courses of frost hardiness of both populations followed curvilinear relationships reaching a maximum hardiness at about Day 50, after which the seedlings spontaneously dehardened. The rate of frost hardening increased linearly with decreasing temperature from 6 to 0 degrees C, but thereafter, no further increase occurred with decreasing temperature to -3 degrees C. The frost hardening process was more sensitive to temperature in the Desert Road seedlings than in the Auckland seedlings, and this difference may account for the intraspecific variation in frost hardening capacity of this species. Comparisons with Pinus radiata D. Don and Lolium perenne L. indicated that interspecific variation in frost hardening capacity can also be accounted for by differences in the sensitivity of the hardening process to temperature.

2.
Planta ; 186(3): 418-25, 1992 Feb.
Article in English | MEDLINE | ID: mdl-24186739

ABSTRACT

Kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson) plants grown in an outdoor enclosure were exposed to the natural conditions of temperature and photon flux density (PFD) over the growing season (October to May). Temperatures ranged from 14 to 21° C while the mean monthly maximum PFD varied from 1000 to 1700 µmol · m(-2) · s(-1), although the peak PFDs exceeded 2100 µmol · m(-2) · s(-1). At intervals, the daily variation in chlorophyll fluorescence at 692 nm and 77K and the photon yield of O2 evolution in attached leaves was monitored. Similarly, the susceptibility of intact leaves to a standard photoinhibitory treatment of 20° C and a PFD of 2000 µmol · m(-2) · s(-1) and the ability to recover at 25° C and 20 µmol · m(-2) · s(-2) was followed through the season. On a few occasions, plants were transferred either to or from a shade enclosure to assess the suceptibility to natural photoinhibition and the capacity for recovery. There were minor though significant changes in early-morning fluorescence emission and photon yield throughout the growing season. The initial fluorescence, Fo, and the maximum fluorescence, Fm, were, however, significantly and persistently different from that in shade-grown kiwifruit leaves, indicative of chronic photoinhibition occurring in the sun leaves. In spring and autumn, kiwifruit leaves were photoinhibited through the day whereas in summer, when the PFDs were highest, no photoinhibition occurred. However, there was apparently no non-radiative energy dissipation occurring then also, indicating that the kiwifruit leaves appeared to fully utilize the available excitation energy. Nevertheless, the propensity for kiwifruit leaves to be susceptible to photoinhibition remained high throughout the season. The cause of a discrepancy between the severe photoinhibition under controlled conditions and the lack of photoinhibition under comparable, natural conditions remains uncertain. Recovery from photoinhibition, by contrast, varied over the season and was maximal in summer and declined markedly in autumn. Transfer of shade-grown plants to full sun had a catastrophic effect on the fluorescence characteristics of the leaf and photon yield. Within 3 d the variable fluorescence, Fv, and the photon yield were reduced by 80 and 40%, respectively, and this effect persisted for at least 20 d. The restoration of fluorescence characteristics on transfer of sun leaves to shade, however, was very slow and not complete within 15 d.

3.
Planta ; 180(1): 32-9, 1989 Dec.
Article in English | MEDLINE | ID: mdl-24201841

ABSTRACT

Intact leaves of kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson) from plants grown in a range of controlled temperatures from 15/10 to 30/25°C were exposed to a photon flux density (PFD) of 1500 µmol·m(-2)·s(-1) at leaf temperatures between 10 and 25°C. Photoinhibition and recovery were followed at the same temperatures and at a PFD of 20 µmol·m(-2)·s(-1), by measuring chlorophyll fluorescence at 77 K and 692 nm, by measuring the photon yield of photosynthetic O2 evolution and light-saturated net photosynthetic CO2 uptake. The growth of plants at low temperatures resulted in chronic photoinhibition as evident from reduced fluorescence and photon yields. However, low-temperature-grown plants apparently had a higher capacity to dissipate excess excitation energy than leaves from plants grown at high temperatures. Induced photoinhibition, from exposure to a PFD above that during growth, was less severe in low-temperature-grown plants, particularly at high exposure temperatures. Net changes in the instantaneous fluorescence,F 0, indicated that little or no photoinhibition occurred when low-temperature-grown plants were exposed to high-light at high temperatures. In contrast, high-temperature-grown plants were highly susceptible to photoinhibitory damage at all exposure temperatures. These data indicate acclimation in photosynthesis and changes in the capacity to dissipate excess excitation energy occurred in kiwifruit leaves with changes in growth temperature. Both processes contributed to changes in susceptibility to photoinhibition at the different growth temperatures. However, growth temperature also affected the capacity for recovery, with leaves from plants grown at low temperatures having moderate rates of recovery at low temperatures compared with leaves from plants grown at high temperatures which had negligible recovery. This also contributed to the reduced susceptibility to photoinhibition in low-temperature-grown plants. However, extreme photoinhibition resulted in severe reductions in the efficiency and capacity for photosynthesis.

4.
Planta ; 174(2): 152-8, 1988 May.
Article in English | MEDLINE | ID: mdl-24221470

ABSTRACT

Photoinhibition of photosynthesis was induced in attached leaves of kiwifruit grown in natural light not exceeding a photon flux density (PFD) of 300 µmol·m(-2)·s(-1), by exposing them to a PFD of 1500 µmol·m(-2)·s(-1). The temperature was held constant, between 5 and 35° C, during the exposure to high light. The kinetics of photoinhibition were measured by chlorophyll fluorescence at 77K and the photon yield of photosynthetic O2 evolution. Photoinhibition occurred at all temperatures but was greatest at low temperatures. Photoinhibition followed pseudo first-order kinetics, as determined by the variable fluorescence (F v) and photon yield, with the long-term steady-state of photoinhibition strongly dependent on temperature wheareas the observed rate constant was only weakly temperature-dependent. Temperature had little effect on the decrease in the maximum fluorescence (F m) but the increase in the instantaneous fluorescence (F o) was significantly affected by low temperatures in particular. These changes in fluorescence indicate that kiwifruit leaves have some capacity to dissipate excessive excitation energy by increasing the rate constant for non-radiative (thermal) energy dissipation although temperature apparently had little effect on this. Direct photoinhibitory damage to the photosystem II reaction centres was evident by the increases in F o and extreme, irreversible damage occurred at the lower temperatures. This indicates that kiwifruit leaves were most susceptible to photoinhibition at low temperatures because direct damage to the reaction centres was greatest at these temperatures. The results also imply that mechanisms to dissipate excess energy were inadequate to afford any protection from photoinhibition over a wide temperature range in these shade-grown leaves.

5.
Planta ; 174(2): 159-65, 1988 May.
Article in English | MEDLINE | ID: mdl-24221471

ABSTRACT

Recovery of photoinhibition in intact leaves of shade-grown kiwifruit was followed at temperatures between 10° and 35° C. Photoinhibition was initially induced by exposing the leaves for 240 min to a photon flux density (PFD) of 1 500 µmol·m(-2)·s(-1) at 20° C. In additional experiments to determine the effect of extent of photoinhibition on recovery, this period of exposure was varied between 90 and 400 min. The kinetics of recovery were followed by chlorophyll fluorescence at 77K. Recovery was rapid at temperatures of 25-35° and slow or negligible below 20° C. The results reinforce those from earlier studies that indicate chilling-sensitive species are particularly susceptible to photoinhibition at low temperatures because of the low rates of recovery. At all temperatures above 15° C, recovery followed pseudo first-order kinetics. The extent of photoinhibition affected the rate constant for recovery which declined in a linear fashion at all temperatures with increased photoinhibition. However, the extent of photoinhibition had little effect on the temperature-dependency of recovery. An analysis of the fluorescence characteristics indicated that a reduction in non-radiative energy dissipation and repair of damaged reaction centres contributed about equally to the apparent recovery though biochemical studies are needed to confirm this. From an interpretation of the kinetics of photoinhibition, we suggest that recovery occurring during photoinhibition is limited by factors different from those that affect post-photoinhibition recovery.

6.
Planta ; 175(3): 355-63, 1988 Sep.
Article in English | MEDLINE | ID: mdl-24221873

ABSTRACT

Photoinhibition of photosynthesis was induced in intact kiwifruit (Actinidia deliciosa (A. Chev.) C. F. Liang et A. R. Ferguson) leaves grown at two photon flux densities (PFDs) of 700 and 1300 µmol·m(-2)·s(-1) in a controlled environment, by exposing the leaves to PFD between 1000 and 2000 µmol·m(-2)·s(-1) at temperatures between 10 and 25°C; recovery from photoinhibition was followed at the same range of temperatures and at a PFD between 0 and 500 µmol·m(-2)·s(-1). In either case the time-courses of photoinhibition and recovery were followed by measuring chlorophyll fluorescence at 692 nm and 77K and by measuring the photon yield of photosynthetic O2 evolution. The initial rate of photoinhibition was lower in the high-light-grown plants but the long-term extent of photoinhibition was not different from that in low-light-grown plants. The rate constants for recovery after photoinhibition for the plants grown at 700 and 1300 µmol·m(-2)·s(-1) or for those grown in shade were similar, indicating that differences between sun and shade leaves in their susceptibility to photoinhibition could not be accounted for by differences in capacity for recovery during photoinhibition. Recovery following photoinhibition was increasingly suppressed by an increasing PFD above 20 µmol·m(-2)·s(-1), indicating that recovery in photoinhibitory conditions would, in any case, be very slow. Differences in photosynthetic capacity and in the capacity for dissipation of non-radiative energy seemed more likely to contribute to differences in susceptibility to photoinhibition between sun and shade leaves of kiwifruit.

7.
Planta ; 168(2): 253-60, 1986 Jun.
Article in English | MEDLINE | ID: mdl-24232029

ABSTRACT

Photoinhibition of photosynthesis was induced in intact leaves of Phaseolus vulgaris L. grown at a photon flux density (PFD; photon fluence rate) of 300 µmol·m(-2)·s(-1), by exposure to a PFD of 1400 µmol·m(-2)·s(-1). Subsequent recovery from photoinhibition was followed at temperatures ranging from 5 to 35°C and at a PFD of either 20 or 140 µmol·m(-2)·s(-1) or in complete darkness. Photoinhibition and recovery were monitored mainly by chlorophyll fluorescence emission at 77K but also by photosynthetic O2 evolution. The effects of the protein-synthesis inhibitors, cycloheximide and chloramphenicol, on photoinhibition and recovery were also determined. The results demonstrate that recovery was temperature-dependent with rates slow below 15°C and optimal at 30°C. Light was required for maximum recovery but the process was light-saturated at a PFD of 20 µmol·m(-2)·s(-1). Chloramphenicol, but not cycloheximide, inactivated the repair process, indicating that recovery involved the synthesis of one or more chloroplast-encoded proteins. With chloramphenicol, it was shown that photoinhibition and recovery occurred concomitantly. The temperature-dependency of the photoinhibition process was, therefore, in part determined by the effect of temperature on the recovery process. Consequently, photoinhibition is the net difference between the rate of damage and the rate of repair. The susceptibility of chilling-sensitive plant species to photoinhibition at low temperatures is proposed to result from the low rates of recovery in this temperature range.

SELECTION OF CITATIONS
SEARCH DETAIL