Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
PLoS Negl Trop Dis ; 15(1): e0009036, 2021 01.
Article in English | MEDLINE | ID: mdl-33497375

ABSTRACT

BACKGROUND: In the absence of vaccines or drugs, insecticides are the mainstay of Aedes-borne disease control. Their utility is challenged by the slow deployment of resources, poor community compliance and inadequate household coverage. Novel application methods are required. METHODOLOGY AND PRINCIPAL FINDINGS: A 10% w/w metofluthrin "emanator" that passively disseminates insecticide from an impregnated net was evaluated in a randomized trial of 200 houses in Mexico. The devices were introduced at a rate of 1 per room and replaced at 3-week intervals. During each of 7 consecutive deployment cycles, indoor resting mosquitoes were sampled using aspirator collections. Assessments of mosquito landing behaviours were made in a subset of houses. Pre-treatment, there were no differences in Aedes aegypti indices between houses recruited to the control and treatment arms. Immediately after metofluthrin deployment, the entomological indices between the trial arms diverged. Averaged across the trial, there were significant reductions in Abundance Rate Ratios for total Ae. aegypti, female abundance and females that contained blood meals (2.5, 2.4 and 2.3-times fewer mosquitoes respectively; P<0.001). Average efficacy was 60.2% for total adults, 58.3% for females, and 57.2% for blood-fed females. The emanators also reduced mosquito landings by 90% from 12.5 to 1.2 per 10-minute sampling period (P<0.05). Homozygous forms of the pyrethroid resistant kdr alleles V410L, V1016L and F1534C were common in the target mosquito population; found in 39%, 24% and 95% of mosquitoes collected during the trial. CONCLUSIONS/SIGNIFICANCE: This is the first randomized control trial to evaluate the entomological impact of any volatile pyrethroid on urban Ae. aegypti. It demonstrates that volatile pyrethroids can have a sustained impact on Ae. aegypti population densities and human-vector contact indoors. These effects occur despite the presence of pyrethroid-resistant alleles in the target population. Formulations like these may have considerable utility for public health vector control responses.


Subject(s)
Aedes/drug effects , Cyclopropanes/pharmacology , Fluorobenzenes/pharmacology , Insecticides/pharmacology , Mosquito Control/methods , Mosquito Vectors/drug effects , Aedes/genetics , Animals , Behavior, Animal , Dengue/transmission , Entomology , Family Characteristics , Female , Humans , Insecticide Resistance/drug effects , Insecticide Resistance/genetics , Mexico , Mosquito Vectors/genetics , Prevalence , Pyrethrins/pharmacology , Research Design
2.
PLoS Negl Trop Dis ; 13(4): e0007281, 2019 04.
Article in English | MEDLINE | ID: mdl-30946747

ABSTRACT

BACKGROUND: Recent epidemics of Zika virus (ZIKV) in the Pacific and the Americas have highlighted its potential as an emerging pathogen of global importance. Both Aedes (Ae.) aegypti and Ae. albopictus are known to transmit ZIKV but variable vector competence has been observed between mosquito populations from different geographical regions and different virus strains. Since Australia remains at risk of ZIKV introduction, we evaluated the vector competence of local Ae. aegypti and Ae. albopictus for a Brazilian epidemic ZIKV strain. In addition, we evaluated the impact of daily temperature fluctuations around a mean of 28°C on ZIKV transmission and extrinsic incubation period. METHODOLOGY/PRINCIPAL FINDINGS: Mosquitoes were orally challenged with a Brazilian ZIKV strain (8.8 log CCID50/ml) and maintained at either 28°C constant or fluctuating temperature conditions. At 3, 7 and 14 days post-infection (dpi), ZIKV RNA copies were quantified in mosquito bodies, as well as wings and legs, using qRT-PCR, while virus antigen in saliva (a proxy for transmission) was detected using a cell culture ELISA. Despite high body and disseminated infection rates in both vectors, the transmission rates of ZIKV in saliva of Ae. aegypti (50-60%) were significantly higher than in Ae. albopictus (10%) at 14 dpi. Both species supported a high viral load in bodies, with no significant differences between constant and fluctuating temperature conditions. However, a significant difference in viral load in wings and legs between species was observed, with higher titres in Ae. aegypti maintained at constant temperature conditions. For ZIKV transmission to occur in Ae. aegypti, a disseminated virus load threshold of 7.59 log10 copies had to be reached. CONCLUSIONS/SIGNIFICANCE: Australian Ae. aegypti are better able to transmit a Brazilian ZIKV strain than Ae. albopictus. The results are in agreement with the global consensus that Ae. aegypti is the major vector of ZIKV.


Subject(s)
Aedes/virology , Mosquito Vectors/virology , Zika Virus Infection/transmission , Animals , Australia/epidemiology , Brazil , RNA, Viral/analysis , Saliva/virology , Temperature , Viral Load , Wings, Animal/virology , Zika Virus/genetics , Zika Virus/pathogenicity
3.
Malar J ; 8: 208, 2009 Sep 03.
Article in English | MEDLINE | ID: mdl-19728871

ABSTRACT

BACKGROUND: The purpose of this study was to establish whether the "bottle assay", a tool for monitoring insecticide resistance in mosquitoes, can complement and augment the capabilities of the established WHO assay, particularly in resource-poor, logistically challenging environments. METHODS: Laboratory reared Aedes aegypti and field collected Anopheles darlingi and Anopheles albimanus were used to assess the suitability of locally sourced solvents and formulated insecticides for use with the bottle assay. Using these adapted protocols, the ability of the bottle assay and the WHO assay to discriminate between deltamethrin-resistant Anopheles albimanus populations was compared. The diagnostic dose of deltamethrin that would identify resistance in currently susceptible populations of An. darlingi and Ae. aegypti was defined. The robustness of the bottle assay during a surveillance exercise in the Amazon was assessed. RESULTS: The bottle assay (using technical or formulated material) and the WHO assay were equally able to differentiate deltamethrin-resistant and susceptible An. albimanus populations. A diagnostic dose of 10 microg a.i./bottle was identified as the most sensitive discriminating dose for characterizing resistance in An. darlingi and Ae. aegypti. Treated bottles, prepared using locally sourced solvents and insecticide formulations, can be stored for > 14 days and used three times. Bottles can be stored and transported under local conditions and field-assays can be completed in a single evening. CONCLUSION: The flexible and portable nature of the bottle assay and the ready availability of its components make it a potentially robust and useful tool for monitoring insecticide resistance and efficacy in remote areas that require minimal cost tools.


Subject(s)
Aedes/drug effects , Anopheles/drug effects , Disease Vectors , Insect Control/methods , Insecticides/pharmacology , Nitriles/pharmacology , Pyrethrins/pharmacology , Animals , Humans , Insecticide Resistance , Peru , Sensitivity and Specificity
4.
Proc Natl Acad Sci U S A ; 106(28): 11530-4, 2009 Jul 14.
Article in English | MEDLINE | ID: mdl-19561295

ABSTRACT

Vector control is a key means of combating mosquito-borne diseases and the only tool available for tackling the transmission of dengue, a disease for which no vaccine, prophylaxis, or therapeutant currently exists. The most effective mosquito control methods include a variety of insecticidal tools that target adults or juveniles. Their successful implementation depends on impacting the largest proportion of the vector population possible. We demonstrate a control strategy that dramatically improves the efficiency with which high coverage of aquatic mosquito habitats can be achieved. The method exploits adult mosquitoes as vehicles of insecticide transfer by harnessing their fundamental behaviors to disseminate a juvenile hormone analogue (JHA) between resting and oviposition sites. A series of field trials undertaken in an Amazon city (Iquitos, Peru) showed that the placement of JHA dissemination stations in just 3-5% of the available resting area resulted in almost complete coverage of sentinel aquatic habitats. More than control mortality occurred in 95-100% of the larval cohorts of Aedes aegypti developing at those sites. Overall reductions in adult emergence of 42-98% were achieved during the trials. A deterministic simulation model predicts amplifications in coverage consistent with our observations and highlights the importance of the residual activity of the insecticide for this technique.


Subject(s)
Aedes/drug effects , Dengue/prevention & control , Ecosystem , Insect Vectors/drug effects , Juvenile Hormones/toxicity , Metamorphosis, Biological/drug effects , Mosquito Control/methods , Aedes/ultrastructure , Animals , Computer Simulation , Insecticides , Microscopy, Electron, Scanning , Models, Biological , Peru
5.
Rev. peru. med. exp. salud publica ; 25(1): 74-100, ene.-mar. 2008.
Article in Spanish | LILACS, LIPECS | ID: lil-564669

ABSTRACT

Las restricciones de la sostenibilidad acerca del uso de insecticidas incluyen los efectos en la salud humana, los ecosistemas agrícolas (ejemplo, los insectos beneficiosos), el medio ambiente, en su sentido más amplio (por ejemplo, las especies que no son el objetivo, paisajes y comunidades) y la selección de los rasgos que confieren la resistencia a los insecticidas. Es posible encontrar ejemplos donde los insecticidas han tenido un impacto desastroso en todas aquellas variables y otros ejemplos donde los peligros que representaban han sido mitigados (por accidente o por diseño). En esta revisión examinamos lo que en la actualidad se puede concluir sobre el impacto de campo directo e indirecto y de largo plazo de los insecticidas en el medio ambiente. Proporcionamos ejemplos específicos, describimos los patrones actuales del uso de insecticidas, consideramos los contextos donde se usan los insecticidas y discutimos el papel de los reglamentos y leyes a fin de mitigar el riesgo. Discutimos cómo el uso de los insecticidas está cambiando como resultado de una mayor conciencia ambiental e inevitablemente, mientras discutimos las principales restricciones del uso de los insecticidas, también sugerimos por qué no se pueden descartar tan fácilmente.


Constraints to the sustainability of insecticide use include effects on human health, agroecosystems (e.g., beneficial insects), the wider environment (e.g., non-target species, landscapes and communities) and the selection of insecticide resistant traits. It is possible to find examples where insecticides have impacted disastrously on all these variables and others where the hazards posed have been (through accident or design) ameliorated. In this review, we examine what can currently be surmised about the direct and indirect long-term, field impacts of insecticides upon the environment. We detail specific examples, describe current insecticide use patterns, consider the contexts within which insecticide use occurs and discuss the role of regulation and legislation in reducing risk. We consider how insecticide use is changing in response to increasing environmental awareness and inevitably, as we discuss the main constraints to insecticide use, we suggest why they cannot easily be discarded.


Subject(s)
Humans , Environment , Ecology , Ecotoxicology , Insecticides , Risk
6.
Malar J ; 6: 101, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17678537

ABSTRACT

BACKGROUND: The cost of mosquito repellents in Latin America has discouraged their wider use among the poor. To address this problem, a low-cost repellent was developed that reduces the level of expensive repellent actives by combining them with inexpensive fixatives that appear to slow repellent evaporation. The chosen actives were a mixture of para-menthane-diol (PMD) and lemongrass oil (LG). METHODS: To test the efficacy of the repellent, field trials were staged in Guatemala and Peru. Repellent efficacy was determined by human-landing catches on volunteers who wore the experimental repellents, control, or 15% DEET. The studies were conducted using a balanced Latin Square design with volunteers, treatments, and locations rotated each night. RESULTS: In Guatemala, collections were performed for two hours, commencing three hours after repellent application. The repellent provided >98% protection for five hours after application, with a biting pressure of >100 landings per person/hour. The 15% DEET control provided lower protection at 92% (p < 0.0001). In Peru, collections were performed for four hours, commencing two hours after repellent application. The PMD/LG repellent provided 95% protection for six hours after application with a biting pressure of >46 landings per person/hour. The 20% DEET control provided significantly lower protection at 64% (p < 0.0001). CONCLUSION: In both locations, the PMD/LG repellent provided excellent protection up to six hours after application against a wide range of disease vectors including Anopheles darlingi. The addition of fixatives to the repellent extended its longevity while enhancing efficacy and significantly reducing its cost to malaria-endemic communities.


Subject(s)
Anopheles/drug effects , DEET/administration & dosage , Insect Repellents , Insect Vectors/drug effects , Malaria/prevention & control , Menthol/analogs & derivatives , Plant Oils/administration & dosage , Terpenes/administration & dosage , Animals , Anopheles/physiology , Cyclohexane Monoterpenes , Eucalyptus/chemistry , Guatemala , Humans , Insect Bites and Stings , Insect Repellents/administration & dosage , Insect Repellents/chemistry , Insect Repellents/economics , Insect Vectors/physiology , Menthol/administration & dosage , Menthol/economics , Mosquito Control , Peru , Plant Oils/economics , Terpenes/economics
7.
J Med Entomol ; 42(4): 620-30, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16119551

ABSTRACT

The effects of pyriproxyfen were tested against a local population of Aedes aegypti (L.) in Iquitos, Perú. Bioassays showed that, when applied to late instars, pyriproxyfen prevented adult emergence at extremely low concentrations (LC50 = 0.012 ppb). There was no adult emergence from water sampled from storage tanks that had been seeded with the equivalent of 50-83 ppb (AI) pyriproxyfen. Five months after treatment, despite constant dilution of these tanks, water sampled from these sources continued to be lethal to larvae and pupae. Additional studies, carried out in the laboratory, showed that groups of five or 20 female blood-fed mosquitoes, exposed to residues of approximately 0.003 g (AI) pyriproxyfen/m2, could transfer enough chemical to new oviposition sites to prevent approximately 80% of adult emergence from larvae developing in that previously uncontaminated water. Moreover, although the fecundity of the adult females used as the transfer vehicles in these tests was unaffected, the subsequent eclosion of the eggs that these mosquitoes laid was decreased by 70-90%. It also was shown that, at very high concentrations (>30,000 ppb), pyriproxyfen-treated water sources were as likely to be used as oviposition sites as untreated sources. These data suggest that treated sites might act as sinks for mosquito reproduction and moreover that such sites might act as dissemination sources for the horizontal transfer of larvicides to new environments by mature females. We review the literature on the environmental and human health effects of this compound and discuss its potential for use as a mosquito control agent in the field.


Subject(s)
Aedes , Insecticides , Mosquito Control/methods , Pyridines , Aedes/growth & development , Animals , Insect Repellents , Juvenile Hormones , Peru
SELECTION OF CITATIONS
SEARCH DETAIL