Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
1.
Front Psychiatry ; 14: 1246879, 2023.
Article in English | MEDLINE | ID: mdl-38025441

ABSTRACT

Multisensory, as opposed to unisensory processing of stimuli, has been found to enhance the performance (e.g., reaction time, accuracy, and discrimination) of healthy individuals across various tasks. However, this enhancement is not as pronounced in patients with schizophrenia (SZ), indicating impaired multisensory integration (MSI) in these individuals. To the best of our knowledge, no study has yet investigated the impact of MSI deficits in the context of working memory, a domain highly reliant on multisensory processing and substantially impaired in schizophrenia. To address this research gap, we employed two adopted versions of the continuous object recognition task to investigate the effect of single-trail multisensory encoding on subsequent object recognition in 21 schizophrenia patients and 21 healthy controls (HC). Participants were tasked with discriminating between initial and repeated presentations. For the initial presentations, half of the stimuli were audiovisual pairings, while the other half were presented unimodal. The task-relevant stimuli were then presented a second time in a unisensory manner (either auditory stimuli in the auditory task or visual stimuli in the visual task). To explore the impact of semantic context on multisensory encoding, half of the audiovisual pairings were selected to be semantically congruent, while the remaining pairs were not semantically related to each other. Consistent with prior studies, our findings demonstrated that the impact of single-trial multisensory presentation during encoding remains discernible during subsequent object recognition. This influence could be distinguished based on the semantic congruity between the auditory and visual stimuli presented during the encoding. This effect was more robust in the auditory task. In the auditory task, when congruent multisensory pairings were encoded, both participant groups demonstrated a multisensory facilitation effect. This effect resulted in improved accuracy and RT performance. Regarding incongruent audiovisual encoding, as expected, HC did not demonstrate an evident multisensory facilitation effect on memory performance. In contrast, SZs exhibited an atypically accelerated reaction time during the subsequent auditory object recognition. Based on the predictive coding model we propose that this observed deviations indicate a reduced semantic modulatory effect and anomalous predictive errors signaling, particularly in the context of conflicting cross-modal sensory inputs in SZ.

2.
Front Psychiatry ; 14: 1223147, 2023.
Article in English | MEDLINE | ID: mdl-37701094

ABSTRACT

Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental disorder that persists into adulthood with both social and cognitive disturbances. Asperger's syndrome (AS) was a distinguished subcategory of autism in the DSM-IV-TR defined by specific symptoms including difficulties in social interactions, inflexible thinking patterns, and repetitive behaviour without any delay in language or cognitive development. Studying the functional brain organization of individuals with these specific symptoms may help to better understand Autism spectrum symptoms. Methods: The aim of this study is therefore to investigate functional connectivity as well as functional network organization characteristics using graph-theory measures of the whole brain in male adults with AS compared to healthy controls (HC) (AS: n = 15, age range 21-55 (mean ± sd: 39.5 ± 11.6), HC: n = 15, age range 22-57 [mean ± sd: 33.5 ± 8.5]). Results: No significant differences were found when comparing the region-by-region connectivity at the whole-brain level between the AS group and HC. However, measures of "transitivity," which reflect local information processing and functional segregation, and "assortativity," indicating network resilience, were reduced in the AS group compared to HC. On the other hand, global efficiency, which represents the overall effectiveness and speed of information transfer across the entire brain network, was increased in the AS group. Discussion: Our findings suggest that individuals with AS may have alterations in the organization and functioning of brain networks, which could contribute to the distinctive cognitive and behavioural features associated with this condition. We suggest further research to explore the association between these altered functional patterns in brain networks and specific behavioral traits observed in individuals with AS, which could provide valuable insights into the underlying mechanisms of its symptomatology.

3.
Front Psychiatry ; 14: 1180827, 2023.
Article in English | MEDLINE | ID: mdl-37599885

ABSTRACT

Introduction: Little is known about cognitive control in adults with high-functioning forms of autism spectrum disorder because previous research focused on children and adolescents. Cognitive control is crucial to monitor and readjust behavior after errors to select contextually appropriate reactions. The congruency effect and conflict adaptation are measures of cognitive control. Post-error slowing, error-related negativity and error positivity provide insight into behavioral and electrophysiological correlates of error processing. In children and adolescent with autism spectrum disorder deficits in cognitive control and error processing have been shown by changes in post-error slowing, error-related negativity and error positivity in the flanker task. Methods: We performed a modified Eriksen flanker task in 17 adults with high-functioning autism spectrum disorder and 17 healthy controls. As behavioral measures of cognitive control and error processing, we included reaction times and error rates to calculate congruency effects, conflict adaptation, and post-error slowing. Event-related potentials namely error-related negativity and error positivity were measured to assess error-related brain activity. Results: Both groups of participants showed the expected congruency effects demonstrated by faster and more accurate responses in congruent compared to incongruent trials. Healthy controls exhibited conflict adaptation as they obtained performance benefits after incongruent trials whereas patients with autism spectrum disorder did not. The expected slowing in reaction times after errors was observed in both groups of participants. Individuals with autism spectrum disorder demonstrated enhanced electrophysiological error-processing compared to healthy controls indicated by increased error-related negativity and error positivity difference amplitudes. Discussion: Our findings show that adults with high-functioning autism spectrum disorder do not show the expected upregulation of cognitive control in response to conflicts. This finding implies that previous experiences may have a reduced influence on current behavior in these patients which possibly contributes to less flexible behavior. Nevertheless, we observed intact behavioral reactions after errors indicating that adults with high-functioning autism spectrum disorder can flexibly adjust behavior in response to changed environmental demands when necessary. The enhancement of electrophysiological error-processing indicates that adults with high-functioning autism spectrum disorder demonstrate an extraordinary reactivity toward errors reflecting increased performance monitoring in this subpopulation of autism spectrum disorder patients.

4.
Brain Sci ; 13(6)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37371448

ABSTRACT

In everyday verbal communication, auditory speech perception is often disturbed by background noise. Especially in disadvantageous hearing conditions, additional visual articulatory information (e.g., lip movement) can positively contribute to speech comprehension. Patients with schizophrenia (SZs) demonstrate an aberrant ability to integrate visual and auditory sensory input during speech perception. Current findings about underlying neural mechanisms of this deficit are inconsistent. Particularly and despite the importance of early sensory processing in speech perception, very few studies have addressed these processes in SZs. Thus, in the present study, we examined 20 adult subjects with SZ and 21 healthy controls (HCs) while presenting audiovisual spoken words (disyllabic nouns) either superimposed by white noise (-12 dB signal-to-noise ratio) or not. In addition to behavioral data, event-related brain potentials (ERPs) were recorded. Our results demonstrate reduced speech comprehension for SZs compared to HCs under noisy conditions. Moreover, we found altered N1 amplitudes in SZ during speech perception, while P2 amplitudes and the N1-P2 complex were similar to HCs, indicating that there may be disturbances in multimodal speech perception at an early stage of processing, which may be due to deficits in auditory speech perception. Moreover, a positive relationship between fronto-central N1 amplitudes and the positive subscale of the Positive and Negative Syndrome Scale (PANSS) has been observed.

5.
BMC Psychiatry ; 23(1): 380, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37254157

ABSTRACT

BACKGROUND: Mental disorders (MDs) are one of the leading causes for workforce sickness absence and disability worldwide. The burden, costs and challenges are enormous for the individuals concerned, employers and society at large. Although most MDs are characterised by a high risk of relapse after treatment or by chronic courses, interventions that link medical-psychotherapeutic approaches with work-directed components to facilitate a sustainable return to work (RTW) are rare. This protocol describes the design of a study to evaluate the (cost-)effectiveness and implementation process of a multimodal, clinical and work-directed intervention, called RTW-PIA, aimed at employees with MDs to achieve sustainable RTW in Germany. METHODS: The study consists of an effectiveness, a health-economic and a process evaluation, designed as a two-armed, multicentre, randomised controlled trial, conducted in German psychiatric outpatient clinics. Sick-listed employees with MDs will receive either the 18-month RTW-PIA treatment in conjunction with care as usual, or care as usual only. RTW-PIA consists of a face-to-face individual RTW support, RTW aftercare group meetings, and web-based aftercare. Assessments will be conducted at baseline and 6, 12, 18 and 24 months after completion of baseline survey. The primary outcome is the employees´ achievement of sustainable RTW, defined as reporting less than six weeks of working days missed out due to sickness absence within 12 months after first RTW. Secondary outcomes include health-related quality of life, mental functioning, RTW self-efficacy, overall job satisfaction, severity of mental illness and work ability. The health-economic evaluation will be conducted from a societal and public health care perspective, as well as from the employer's perspective in a cost-benefit analysis. The design will be supplemented by a qualitative effect evaluation using pre- and post-interviews, and a multimethod process evaluation examining various predefined key process indicators from different stakeholder perspectives. DISCUSSION: By applying a comprehensive, multimethodological evaluation design, this study captures various facets of RTW-PIA. In case of promising results for sustainable RTW, RTW-PIA may be integrated into standard care within German psychiatric outpatient clinics. TRIAL REGISTRATION: The study was prospectively registered with the German Clinical Trials Register ( DRKS00026232 , 1 September 2021).


Subject(s)
Mental Disorders , Return to Work , Humans , Quality of Life , Mental Disorders/therapy , Job Satisfaction , Cost-Benefit Analysis , Sick Leave , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
6.
Neuroimage Clin ; 36: 103185, 2022.
Article in English | MEDLINE | ID: mdl-36099807

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) is an established therapy for patients with Parkinson's disease. In silico computer models for DBS hold the potential to inform a selection of stimulation parameters. In recent years, the focus has shifted towards DBS-induced firing in myelinated axons, deemed particularly relevant for the external modulation of neural activity. OBJECTIVE: The aim of this project was to investigate correlations between patient-specific pathway activation profiles and clinical motor improvement. METHODS: We used the concept of pathway activation modeling, which incorporates advanced volume conductor models and anatomically authentic fiber trajectories to estimate DBS-induced action potential initiation in anatomically plausible pathways that traverse in close proximity to targeted nuclei. We applied the method on two retrospective datasets of DBS patients, whose clinical improvement had been evaluated according to the motor part of the Unified Parkinson's Disease Rating Scale. Based on differences in outcome and activation levels for intrapatient DBS protocols in a training cohort, we derived a pathway activation profile that theoretically induces a complete alleviation of symptoms described by UPDRS-III. The profile was further enhanced by analyzing the importance of matching activation levels for individual pathways. RESULTS: The obtained profile emphasized the importance of activation in pathways descending from the motor-relevant cortical regions as well as the pallidothalamic pathways. The degree of similarity of patient-specific profiles to the optimal profile significantly correlated with clinical motor improvement in a test cohort. CONCLUSION: Pathway activation modeling has a translational utility in the context of motor symptom alleviation in Parkinson's patients treated with DBS.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Subthalamic Nucleus/physiology , Deep Brain Stimulation/methods , Retrospective Studies , Treatment Outcome , Parkinson Disease/therapy , Parkinson Disease/etiology
7.
Front Cell Dev Biol ; 10: 864433, 2022.
Article in English | MEDLINE | ID: mdl-35493079

ABSTRACT

In primary open-angle glaucoma (POAG), a neurodegenerative disease of the optic nerve (ON) and leading cause of blindness, the optic nerve head (ONH) undergoes marked structural extracellular matrix (ECM) changes, which contribute to its permanent deformation and to degeneration of ON axons. The remodeling process of the ECM causes changes in the biomechanical properties of the ONH and the peripapillary sclera, which is accompanied by an increased reactivity of the resident astrocytes. The molecular factors involved in the remodeling process belong to the Transforming growth factor (TGF)-ß superfamily, especially TGF-ß2. In previous publications we showed that TGF-ß2 induced ECM alterations are mediated by Cellular Communication Network Factor (CCN)2/Connective Tissue Growth Factor (CTGF) and recently we showed that CCN2/CTGF is expressed by astrocytes of the ON under normal conditions. In this study we wanted to get a better understanding of the function of CCN2/CTGF under normal and pathologic conditions. To this end, we analyzed the glial lamina and peripapillary sclera of CCN2/CTGF overexpressing mice and studied the effect of CCN2/CTGF and increasing substratum stiffness on murine ON astrocytes in vitro. We observed enhanced astrocyte reactivity in the ONH, increased ECM protein synthesis in the peripapillary sclera and increased Ccn2/Ctgf expression in the ONH during the pathologic development in situ. CCN2/CTGF treatment of primary murine ON astrocytes induced a higher migration rate, and increase of ECM proteins including fibronectin, elastin and collagen type III. Furthermore, the astrocytes responded to stiffer substratum with increased glial fibrillary acidic protein, vimentin, actin and CCN2/CTGF synthesis. Finally, we observed the reinforced appearance of CCN2/CTGF in the lamina cribrosa of glaucomatous patients. We conclude that reactive changes in ONH astrocytes, induced by the altered biomechanical characteristics of the region, give rise to a self-amplifying process that includes increased TGF-ß2/CCN2/CTGF signaling and leads to the synthesis of ECM molecules and cytoskeleton proteins, a process that in turn augments the stiffness at the ONH. Such a scenario may finally result in a vicious circle in the pathogenesis of POAG. The transgenic CTGF-overexpressing mouse model might be an optimal model to study the chronic pathological POAG changes in the ONH.

8.
Neuropsychologia ; 161: 108022, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34530026

ABSTRACT

Deficits in audiovisual speech perception have consistently been detected in patients with Autism Spectrum Disorder (ASD). Especially for patients with a highly functional subtype of ASD, it remains uncertain whether these deficits and underlying neural mechanisms persist into adulthood. Research indicates differences in audiovisual speech processing between ASD and healthy controls (HC) in the auditory cortex. The temporal dynamics of these differences still need to be characterized. Thus, in the present study we examined 14 adult subjects with high-functioning ASD and 15 adult HC while they viewed visual (lip movements) and auditory (voice) speech information that was either superimposed by white noise (condition 1) or not (condition 2). Subject's performance was quantified by measuring stimulus comprehension. In addition, event-related brain potentials (ERPs) were recorded. Results demonstrated worse speech comprehension for ASD subjects compared to HC under noisy conditions. Moreover, ERP-analysis revealed significantly higher P2 amplitudes over parietal electrodes for ASD subjects compared to HC.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Speech Perception , Adult , Brain , Humans , Speech
9.
Clin Case Rep ; 9(5): e04084, 2021 May.
Article in English | MEDLINE | ID: mdl-34084502

ABSTRACT

Reporting of new or unexpected adverse drug reactions of medicines that are subject to additional monitoring ("black triangle" label), such as the antipsychotic drug cariprazine, is of paramount importance to improve pharmacotherapy safety.

10.
J Parkinsons Dis ; 11(4): 1887-1899, 2021.
Article in English | MEDLINE | ID: mdl-34151855

ABSTRACT

BACKGROUND: Recent technological advances in deep brain stimulation (DBS) (e.g., directional leads, multiple independent current sources) lead to increasing DBS-optimization burden. Techniques to streamline and facilitate programming could leverage these innovations. OBJECTIVE: We evaluated clinical effectiveness of algorithm-guided DBS-programming based on wearable-sensor-feedback compared to standard-of-care DBS-settings in a prospective, randomized, crossover, double-blind study in two German DBS centers. METHODS: For 23 Parkinson's disease patients with clinically effective DBS, new algorithm-guided DBS-settings were determined and compared to previously established standard-of-care DBS-settings using UPDRS-III and motion-sensor-assessment. Clinical and imaging data with lead-localizations were analyzed to evaluate characteristics of algorithm-derived programming compared to standard-of-care. Six different versions of the algorithm were evaluated during the study and 10 subjects programmed with uniform algorithm-version were analyzed as a subgroup. RESULTS: Algorithm-guided and standard-of-care DBS-settings effectively reduced motor symptoms compared to off-stimulation-state. UPDRS-III scores were reduced significantly more with standard-of-care settings as compared to algorithm-guided programming with heterogenous algorithm versions in the entire cohort. A subgroup with the latest algorithm version showed no significant differences in UPDRS-III achieved by the two programming-methods. Comparing active contacts in standard-of-care and algorithm-guided DBS-settings, contacts in the latter had larger location variability and were farther away from a literature-based optimal stimulation target. CONCLUSION: Algorithm-guided programming may be a reasonable approach to replace monopolar review, enable less trained health-professionals to achieve satisfactory DBS-programming results, or potentially reduce time needed for programming. Larger studies and further improvements of algorithm-guided programming are needed to confirm these results.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Algorithms , Deep Brain Stimulation/methods , Double-Blind Method , Feedback , Humans , Parkinson Disease/therapy , Prospective Studies , Treatment Outcome
11.
Multisens Res ; : 1-12, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33984831

ABSTRACT

Synaesthesia is a multimodal phenomenon in which the activation of one sensory modality leads to an involuntary additional experience in another sensory modality. To date, normal multisensory processing has hardly been investigated in synaesthetes. In the present study we examine processes of audiovisual separation in synaesthesia by using a simultaneity judgement task. Subjects were asked to indicate whether an acoustic and a visual stimulus occurred simultaneously or not. Stimulus onset asynchronies (SOA) as well as the temporal order of the stimuli were systematically varied. Our results demonstrate that synaesthetes are better in separating auditory and visual events than control subjects, but only when vision leads.

12.
Psychotherapeut (Berl) ; 66(3): 240-246, 2021.
Article in German | MEDLINE | ID: mdl-33642699

ABSTRACT

Background: Due to the hygiene measures during the coronavirus pandemic at the beginning of 2020, psychotherapy by personal attendance was no longer possible or only possible to a limited extent in many places in Germany. In its place, psychotherapy via video conference was used as an alternative option for treatment. Objective: The present study was concerned with the question of the actual use of this form of psychotherapy during the lockdown. Material and methods: Therapists in the psychotherapeutic training outpatient department of the Medical School of Hanover were questioned on their experiences and the experiences of patients with the use of the video consultation during running guideline psychotherapy. Data from 338 patents could be collated. The data contained information, for example on acceptance or rejection of the offer of a video consultation, on the reasons for rejection and on technical problems by the execution. Results: The presented data show that 35% of patients could not be reached by the video consultation. Approximately half of the patients from this group could not use this form of therapy due to the lack of technical equipment. The other half did not want therapy using the video consultation, although the technical requirements were available. In the group of patients who used the video consultation, the session was interrupted due to technical disturbances in 31% of the cases. In a further 10% of the cases the disturbances even led to a premature termination of the session. The presented data make it clear that the use of therapy via video consultation significantly decreases with increasing age and reduced education level. Conclusion: The results of the present study show that a considerable proportion of the patients could not be reached by the offer, despite the dissemination of the video consultation; therefore, in the case of further lockdowns special offers for this group should be considered. The authors recommend that the health insurance companies provide support for patients who do not have the technical requirements at their disposal. Patients who do not want to participate in this form of treatment need therapeutically motivating support.

13.
Matrix Biol ; 97: 1-19, 2021 03.
Article in English | MEDLINE | ID: mdl-33582236

ABSTRACT

Primary open-angle glaucoma, a neurodegenerative disorder characterized by degeneration of optic nerve axons, is a frequent cause of vision loss and blindness worldwide. Several randomized multicenter studies have identified intraocular pressure as the major risk factor for its development, caused by an increased outflow resistance to the aqueous humor within the trabecular meshwork. However, the molecular mechanism for increased outflow resistance in POAG has not been fully established. One of the proposed players is the pro-fibrotic transforming growth factor (TGF)-ß2, which is found in higher amounts in the aqueous humor of patients with POAG. In this study we elucidated the role of decorin, a small leucine-rich proteoglycan and known antagonist of TGF-ß, in the region of aqueous humor outflow tissue. Utilizing decorin deficient mice, we discovered that decorin modulated TGF-ß signaling in the canonical outflow pathways and the lack of decorin in vivo caused an increase in intraocular pressure. Additionally, the Dcn-/- mice showed significant loss of optic nerve axons and morphological changes in the glial lamina, typical features of glaucoma. Moreover, using human trabecular meshwork cells we discovered that soluble decorin attenuated TGF-ß2 mediated synthesis and expression of typical downstream target genes including CCN2/CTGF, FN and COL IV.  Finally, we found a negative reciprocal regulation of decorin and TGF-ß, with a dramatic downregulation of decorin in the canonical outflow pathways of patients with primary open-angle glaucoma. Collectively, our results indicate that decorin plays an important role in the pathogenesis of primary open-angle glaucoma and offers novel perspectives in the treatment of this serious disease.


Subject(s)
Aqueous Humor/metabolism , Decorin/genetics , Glaucoma, Open-Angle/pathology , Transforming Growth Factor beta/metabolism , Animals , Disease Models, Animal , Gene Expression Regulation , Gene Knockout Techniques , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/metabolism , Humans , Mice , Primary Cell Culture , Signal Transduction , Trabecular Meshwork/metabolism , Trabecular Meshwork/pathology
14.
Neural Regen Res ; 16(8): 1524-1528, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33433466

ABSTRACT

The canonical Wnt/ß-catenin signaling pathway has been shown to play a major role during embryonic development and maturation of the central nervous system including the retina. It has a significant impact on retinal vessel formation and maturation, as well as on the establishment of synaptic structures and neuronal function in the central nervous system. Mutations in components of the Wnt/ß-catenin signaling cascade may lead to severe retinal diseases, while dysregulation of Wnt signaling can contribute to disease progression. Apart from the angiogenic role of Wnt/ß-catenin signaling, research in the last decades leads to the theory of a protective effect of Wnt/ß-catenin signaling on damaged neurons. In this review, we focus on the neuroprotective properties of the Wnt/ß-catenin pathway as well as its downstream signaling in the retina.

15.
Front Psychiatry ; 11: 822, 2020.
Article in English | MEDLINE | ID: mdl-33061909

ABSTRACT

BACKGROUND AND AIMS: In addition to craving responses to salient food cues, the anticipation of short-term rewarding consumption of palatable food may overrun the anticipation of long-term negative consequences of obesity. The present investigation addressed the potential interplay of food cravings and decision-making abilities in individuals with obesity. METHOD: Study 1 included 107 bariatric surgery candidates with class 2/3 obesity (OB-group) and study 2 included 54 individuals with normal weight/pre-obesity (nonOB-group). In both studies, standardized questionnaires concerning food cravings, food addiction, and psychopathology were administered. A cue-reactivity paradigm was used to measure craving responses toward semi-individualized images of highly palatable, processed food/fruit (appetitive food cues) compared to images of raw vegetables (non-appetitive food cues). Decision-making was measured with a modified computerized version of the Iowa Gambling Task (IGT) with food pictures. Both groups were divided into two subgroups that were randomized to different IGT conditions. In one IGT condition the advantageous IGT card decks were covered by pictures of palatable, processed food or fruit and the disadvantageous decks by images of raw vegetables (= congruent condition), and in the other IGT condition vice versa. RESULTS: Participants in the OB-group admitted on average higher craving responses toward palatable, processed food or fruit cues compared to pictures of raw vegetables. This was not the case in the nonOB-group. Contrary to our hypothesis, decision-making performance in both groups was worse when pictures of palatable, processed food or fruit were associated with advantageous IGT card decks compared to performance when those pictures were linked to the disadvantageous decks. The interference effect of food pictures processing on advantageous decision-making has been observed particularly in those individuals of the OB-group who exhibited high craving responses toward palatable, processed food cues or high levels of food addiction. DISCUSSION: The results indicate that food pictures processing interferes with decision-making, regardless of weight status. Opposed to the hypothesis, stronger tendencies to avoid than to approach pictures presenting processed, tasty food were observed. Further research should examine how cognitive avoidance tendencies toward processed, high energy food and approach tendencies toward healthy food can be transferred to real life situations.

16.
Mol Vis ; 26: 135-149, 2020.
Article in English | MEDLINE | ID: mdl-32180679

ABSTRACT

Purpose: To analyze whether activation of endogenous wingless (Wnt)/ß-catenin signaling in Müller cells is involved in protection of retinal ganglion cells (RGCs) following excitotoxic damage. Methods: Transgenic mice with a tamoxifen-dependent ß-catenin deficiency in Müller cells were injected with N-methyl-D-aspartate (NMDA) into the vitreous cavity of one eye to induce excitotoxic damage of the RGCs, while the contralateral eye received PBS only. Retinal damage was quantified by counting the total number of RGC axons in cross sections of optic nerves and measuring the thickness of the retinal layers on meridional sections. Then, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay was performed to identify apoptotic cells in retinas of both genotypes. Western blot analyses to assess the level of retinal ß-catenin and real-time RT-PCR to quantify the retinal expression of neuroprotective factors were performed. Results: Following NMDA injection of wild-type mice, a statistically significant increase in retinal ß-catenin protein levels was observed compared to PBS-injected controls, an effect that was blocked in mice with a Müller cell-specific ß-catenin deficiency. Furthermore, in mice with a ß-catenin deficiency in Müller cells, NMDA injection led to a statistically significant decrease in RGC axons as well as a substantial increase in TUNEL-positive cells in the RGC layer compared to the NMDA-treated controls. Moreover, in the retinas of the control mice a NMDA-mediated statistically significant induction of leukemia inhibitory factor (Lif) mRNA was detected, an effect that was substantially reduced in mice with a ß-catenin deficiency in Müller cells. Conclusions: Endogenous Wnt/ß-catenin signaling in Müller cells protects RGCs against excitotoxic damage, an effect that is most likely mediated via the induction of neuroprotective factors, such as Lif.


Subject(s)
Ependymoglial Cells/metabolism , Optic Nerve/metabolism , Retina/metabolism , Retinal Ganglion Cells/metabolism , Tamoxifen/pharmacology , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism , Animals , Apoptosis/drug effects , Axons/drug effects , Axons/metabolism , Ependymoglial Cells/drug effects , In Situ Nick-End Labeling , Leukemia Inhibitory Factor/metabolism , Mice , Mice, Transgenic , N-Methylaspartate/toxicity , Optic Nerve/drug effects , Retina/drug effects , Retina/pathology , Retinal Ganglion Cells/drug effects , Wnt Signaling Pathway/genetics , beta Catenin/deficiency
17.
Sci Rep ; 10(1): 3802, 2020 03 02.
Article in English | MEDLINE | ID: mdl-32123197

ABSTRACT

Social stress contributes to major societal health burdens, such as anxiety disorders and nervousness. Nx4 has been found to modulate stress responses. We investigated whether dampening of such responses is associated with neuronal correlates in brain regions involved in stress and anxiety. In a randomized, placebo-controlled, double-blind, cross-over trial, 39 healthy males took a single dose (three tablets) of either placebo or Nx4, 40 to 60 minutes before an fMRI scan session. We here report on drug effects on amygdala responses during a face-matching task, which was performed during a complex test battery further including resting-state brain connectivity and a social stress experiment. The first of the Primary Outcomes, defined in a hierarchical order, concerned reduced amygdala effects after intake of verum compared to placebo. We found a statistically significant reduction in differential activations in the left amygdala for the contrast negative faces versus forms during verum versus placebo condition. Our results indicate that effects of Nx4 can be monitored in the brain. Previously noted effects on stress responses may thus be modulated by affective brain regions including the amygdala.


Subject(s)
Amygdala/drug effects , Amygdala/physiopathology , Healthy Volunteers , Interpersonal Relations , Magnetic Resonance Imaging , Plant Extracts/pharmacology , Stress, Psychological/physiopathology , Adult , Amygdala/diagnostic imaging , Cross-Over Studies , Double-Blind Method , Female , Humans , Male , Stress, Psychological/diagnostic imaging
18.
Brain Cogn ; 139: 105518, 2020 03.
Article in English | MEDLINE | ID: mdl-31954233

ABSTRACT

Excessive video gaming has a number of psychological and social consequences. In this study, we looked at possible changes in gray and white matter and asked whether these changes are correlated to psychological measures. Twentynine players of violent videogames (mean daily playing time 4.7 h) and age matched controls were subjected to a battery of questionnaires assessing aggression, empathy, hostility, internet addiction and psychological well-being. Diffusion tensor and 3D T1-weighted MR images were obtained to examine gray (via voxel-based morphometry) and white (via tract-based spatial statistics) matter changes. Widespread regions of decreased gray matter in the players were found but no region showed increased intensity of gray matter. Density of gray matter showed a negative correlation with the total length of playing in years in the right posterior cingulate gyrus, left pre- and postcentral gyrus, right thalamus, among others. Furthermore, fractional anisotropy, a marker for white matter structure, was decreased in the left and right cingulum in the players. Both, gray and white matter changes correlated with measures of aggression, hostility, self esteem, and the degree of internet addiction. This study thus shows profound changes of brain structure as a function of excessive playing of violent video games.


Subject(s)
Behavior, Addictive/diagnostic imaging , Brain/diagnostic imaging , Internet , Video Games , Adolescent , Adult , Anisotropy , Behavior, Addictive/psychology , Brain/pathology , Case-Control Studies , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/pathology , Humans , Magnetic Resonance Imaging , Male , Organ Size , Self Concept , Somatosensory Cortex/diagnostic imaging , Somatosensory Cortex/pathology , Thalamus/diagnostic imaging , Thalamus/pathology , White Matter/diagnostic imaging , White Matter/pathology , Young Adult
19.
Front Psychol ; 10: 2489, 2019.
Article in English | MEDLINE | ID: mdl-31749748

ABSTRACT

Our ability to integrate multiple sensory-based representations of our surrounding supplies us with a more holistic view of our world. There are many complex algorithms our nervous system uses to construct a coherent perception. An indicator to solve this 'binding problem' are the temporal characteristics with the specificity that environmental information has different propagation speeds (e.g., sound and electromagnetic waves) and sensory processing time and thus the temporal relationship of a stimulus pair derived from the same event must be flexibly adjusted by our brain. This tolerance can be conceptualized in the form of the cross-modal temporal binding window (TBW). Several studies showed the plasticity of the TBW and its importance concerning audio-visual illusions, synesthesia, as well as psychiatric disturbances. Using three audio-visual paradigms, we investigated the importance of length (short vs. long) as well as modality (uni- vs. multimodal) of a perceptual training aiming at reducing the TBW in a healthy population. We also investigated the influence of the TBW on speech intelligibility, where participants had to integrate auditory and visual speech information from a videotaped speaker. We showed that simple sensory trainings can change the TBW and are capable of optimizing speech perception at a very naturalistic level. While the training-length had no different effect on the malleability of the TBW, the multisensory trainings induced a significantly stronger narrowing of the TBW than their unisensory counterparts. Furthermore, a narrowing of the TBW was associated with a better performance in speech perception, meaning that participants showed a greater capacity for integrating informations from different sensory modalities in situations with one modality impaired. All effects persisted at least seven days. Our findings show the significance of multisensory temporal processing regarding ecologically valid measures and have important clinical implications for interventions that may be used to alleviate debilitating conditions (e.g., autism, schizophrenia), in which multisensory temporal function is shown to be impaired.

20.
Front Psychol ; 10: 2286, 2019.
Article in English | MEDLINE | ID: mdl-31649597

ABSTRACT

Audiovisual (AV) integration deficits have been proposed to underlie difficulties in speech perception in Asperger's syndrome (AS). It is not known, if the AV deficits are related to alterations in sensory processing at the level of unisensory processing or at levels of conjoint multisensory processing. Functional Magnetic-resonance images (MRI) was performed in 16 adult subjects with AS and 16 healthy controls (HC) matched for age, gender, and verbal IQ as they were exposed to disyllabic AV congruent and AV incongruent nouns. A simple semantic categorization task was used to ensure subjects' attention to the stimuli. The left auditory cortex (BA41) showed stronger activation in HC than in subjects with AS with no interaction regarding AV congruency. This suggests that alterations in auditory processing in unimodal low-level areas underlie AV speech perception deficits in AS. Whether this is signaling a difficulty in the deployment of attention remains to be demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...