Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Front Genome Ed ; 6: 1376927, 2024.
Article in English | MEDLINE | ID: mdl-38938511

ABSTRACT

With scientific progress and the development of new genomic techniques (NGTs), the spectrum of organisms modified for various purposes is rapidly expanding and includes a wide range of taxonomic groups. An improved understanding of which newly developed products may be introduced into the market and released into the environment in the near and more distant future is of particular interest for policymakers, regulatory authorities, and risk assessors. To address this information need, we conducted a horizon scanning (HS) of potential environmental applications in four groups of organisms: terrestrial animals (excluding insects and applications with gene drives), fish, algae and microorganisms. We applied a formal scoping review methodology comprising a structured search of the scientific literature followed by eligibility screening, complemented by a survey of grey literature, and regulatory websites and databases. In all four groups of organisms we identified a broad range of potential applications in stages of basic as well as advanced research, and a limited number of applications which are on, or ready to be placed on, the market. Research on GM animals including fish is focused on farmed animals and primarily targets traits which increase performance, influence reproduction, or convey resistance against diseases. GM algae identified in the HS were all unicellular, with more than half of the articles concerning biofuel production. GM algae applications for use in the environment include biocontrol and bioremediation, which are also the main applications identified for GM microorganisms. From a risk assessor's perspective these potential applications entail a multitude of possible pathways to harm. The current limited level of experience and limited amount of available scientific information could constitute a significant challenge in the near future, for which risk assessors and competent authorities urgently need to prepare.

2.
BioTech (Basel) ; 13(2)2024 May 15.
Article in English | MEDLINE | ID: mdl-38804296

ABSTRACT

Information on the state of the environment is important to achieve the objectives of the European Green Deal, including the EU's Biodiversity Strategy for 2030. The existing regulatory provisions for genetically modified organisms (GMOs) foresee an obligatory post-market environmental monitoring (PMEM) of potential adverse effects upon release into the environment. So far, GMO monitoring activities have focused on genetically modified crops. With the advent of new genomic techniques (NGT), novel GMO applications are being developed and may be released into a range of different, non-agricultural environments with potential implications for ecosystems and biodiversity. This challenges the current monitoring concepts and requires adaptation of existing monitoring programs to meet monitoring requirements. While the incorporation of existing biodiversity monitoring programs into GMO monitoring at the national level is important, additional monitoring activities will also be required. Using case examples, we highlight that monitoring requirements for novel GMO applications differ from those of GM crop plants previously authorized for commercial use in the European Union.

3.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338787

ABSTRACT

The release of novel genetically modified (GM) virus applications into the environment for agricultural, veterinary, and nature-conservation purposes poses a number of significant challenges for risk assessors and regulatory authorities. Continuous efforts to scan the horizon for emerging applications are needed to gain an overview of new GM virus applications. In addition, appropriate approaches for risk assessment and management have to be developed. These approaches need to address pertinent challenges, in particular with regard to the environmental release of GM virus applications with a high probability for transmission and spreading, including transboundary movements and a high potential to result in adverse environmental effects. However, the current preparedness at the EU and international level to assess such GM virus application is limited. This study addresses some of the challenges associated with the current situation, firstly, by conducting a horizon scan to identify emerging GM virus applications with relevance for the environment. Secondly, outstanding issues regarding the environmental risk assessment (ERA) of GM virus applications are identified based on an evaluation of case study examples. Specifically, the limited scientific information available for the ERA of some applications and the lack of detailed and appropriate guidance for ERA are discussed. Furthermore, considerations are provided for future work that is needed to establish adequate risk assessment and management approaches.


Subject(s)
Agriculture , Viruses , Plants, Genetically Modified , Risk Assessment , Climate , Viruses/genetics
4.
Foods ; 13(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338508

ABSTRACT

The EU's regulatory framework for genetically modified organisms (GMOs) was developed for "classical" transgenic GMOs, yet advancements in so-called "new genomic techniques (NGTs)" have led to implementation challenges regarding detection and identification. As traceability can complement detection and identification strategies, improvements to the existing traceability strategy for GMOs are investigated in this study. Our results are based on a comprehensive analysis of existing traceability systems for globally traded agricultural products, with a focus on soy. Alternative traceability strategies in other sectors were also analysed. One focus was on traceability strategies for products with characteristics for which there are no analytical verification methods. Examples include imports of "conflict minerals" into the EU. The so-called EU Conflict Minerals Regulation requires importers of certain raw materials to carry out due diligence in the supply chain. Due diligence regulations, such as the EU's Conflict Minerals Regulation, can legally oblige companies to take responsibility for certain risks in their supply chains. They can also require the importer to prove the regional origin of imported goods. The insights from those alternative traceability systems are transferred to products that might contain GMOs. When applied to the issue of GMOs, we propose reversing the burden of proof: All companies importing agricultural commodities must endeavour to identify risks of unauthorised GMOs (including NGTs) in their supply chain and, where appropriate, take measures to minimise the risk to raw material imports. The publication concludes that traceability is a means to an end and serves as a prerequisite for due diligence in order to minimise the risk of GMO contamination in supply chains. The exemplary transfer of due diligence to a company in the food industry illustrates the potential benefits of mandatory due diligence, particularly for stakeholders actively managing non-GMO supply chains.

SELECTION OF CITATIONS
SEARCH DETAIL