Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Mol Neurobiol ; 59(9): 5366-5378, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35699875

ABSTRACT

Monogenic forms of cerebral small vessel disease (CSVD) can be caused by both variants in nuclear DNA and mitochondrial DNA (mtDNA). Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is known to have a phenotype similar to Cerebral Autosomal Dominant Arteriopathy with Sub-cortical Infarcts and Leukoencephalopathy (CADASIL), and can be caused by variants in the mitochondrial genome and in several nuclear-encoded mitochondrial protein (NEMP) genes. The aim of this study was to screen for variants in the mitochondrial genome and NEMP genes in a NOTCH3-negative CADASIL cohort, to identify a potential link between mitochondrial dysfunction and CSVD pathology. Whole exome sequencing was performed for 50 patients with CADASIL-like symptomology on the Ion Torrent system. Mitochondrial sequencing was performed using an in-house designed protocol with sequencing run on the Ion GeneStudio S5 Plus (S5 +). NEMP genes and mitochondrial sequencing data were examined for rare (MAF < 0.001), non-synonymous variants that were predicted to have a deleterious effect on the protein. We identified 29 candidate NEMP variants that had links to either MELAS-, encephalopathy-, or Alzheimer's disease-related phenotypes. Based on these changes, variants affecting POLG, MTO1, LONP1, NDUFAF6, NDUFB3, and TCIRG1 were thought to play a potential role in CSVD pathology in this cohort. Overall, the exploration of the mitochondrial genome identified a potential role for mitochondrial related proteins and mtDNA variants contributing to CSVD pathologies.


Subject(s)
CADASIL , Cerebral Small Vessel Diseases , Leukoencephalopathies , MELAS Syndrome , Stroke , Vacuolar Proton-Translocating ATPases , ATP-Dependent Proteases/genetics , Cerebral Small Vessel Diseases/genetics , DNA, Mitochondrial/genetics , Humans , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Proteins/genetics , Mutation/genetics
2.
Sci Rep ; 12(1): 6827, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35473946

ABSTRACT

Estimates of mutation rates for various regions of the human mitochondrial genome (mtGenome) vary widely, depending on whether they are inferred using a phylogenetic approach or obtained directly from pedigrees. Traditionally, only the control region, or small portions of the coding region have been targeted for analysis due to the cost and effort required to produce whole mtGenome Sanger profiles. Here, we report one of the first pedigree derived mutation rates for the entire human mtGenome. The entire mtGenome from 225 individuals originating from Norfolk Island was analysed to estimate the pedigree derived mutation rate and compared against published mutation rates. These individuals were from 45 maternal lineages spanning 345 generational events. Mutation rates for various portions of the mtGenome were calculated. Nine mutations (including two transitions and seven cases of heteroplasmy) were observed, resulting in a rate of 0.058 mutations/site/million years (95% CI 0.031-0.108). These mutation rates are approximately 16 times higher than estimates derived from phylogenetic analysis with heteroplasmy detected in 13 samples (n = 225, 5.8% individuals). Providing one of the first pedigree derived estimates for the entire mtGenome, this study provides a better understanding of human mtGenome evolution and has relevance to many research fields, including medicine, anthropology and forensics.


Subject(s)
Genome, Mitochondrial , DNA, Mitochondrial/genetics , Genome, Mitochondrial/genetics , Humans , Mutation Rate , Pedigree , Phylogeny
3.
Sci Rep ; 10(1): 11089, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32632177

ABSTRACT

Mitochondria supply intracellular energy requirements during exercise. Specific mitochondrial haplogroups and mitochondrial genetic variants have been associated with athletic performance, and exercise responses. However, these associations were discovered using underpowered, candidate gene approaches, and consequently have not been replicated. Here, we used whole-mitochondrial genome sequencing, in conjunction with high-throughput genotyping arrays, to discover novel genetic variants associated with exercise responses in the Gene SMART (Skeletal Muscle Adaptive Response to Training) cohort (n = 62 completed). We performed a Principal Component Analysis of cohort aerobic fitness measures to build composite traits and test for variants associated with exercise outcomes. None of the mitochondrial genetic variants but eight nuclear encoded variants in seven separate genes were found to be associated with exercise responses (FDR < 0.05) (rs11061368: DIABLO, rs113400963: FAM185A, rs6062129 and rs6121949: MTG2, rs7231304: AFG3L2, rs2041840: NDUFAF7, rs7085433: TIMM23, rs1063271: SPTLC2). Additionally, we outline potential mechanisms by which these variants may be contributing to exercise phenotypes. Our data suggest novel nuclear-encoded SNPs and mitochondrial pathways associated with exercise response phenotypes. Future studies should focus on validating these variants across different cohorts and ethnicities.


Subject(s)
Athletic Performance/statistics & numerical data , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Exercise , High-Intensity Interval Training/methods , Mitochondria/genetics , Polymorphism, Single Nucleotide , Adult , Cohort Studies , Humans
4.
Mol Genet Genomics ; 295(2): 515-523, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31897802

ABSTRACT

Adaptation to exercise training is a complex trait that may be influenced by genetic variants. We identified 36 single nucleotide polymorphisms (SNPs) that had been previously associated with endurance or strength performance, exercise-related phenotypes or exercise intolerant disorders. A MassARRAY multiplex genotyping assay was designed to identify associations with these SNPs against collected endurance fitness phenotype parameters obtained from two exercise cohorts (Gene SMART study; n = 58 and Hawaiian Ironman Triathlon 2008; n = 115). These parameters included peak power output (PP), a time trial (TT), lactate threshold (LT), maximal oxygen uptake (VO2 max) in recreationally active individuals and a triathlon time-to-completion (Hawaiian Ironman Triathlon cohort only). A nominal significance threshold of α < 0.05 was used to identify 17 variants (11 in the Gene SMART population and six in the Hawaiian Ironman Triathlon cohort) which were significantly associated with performance gains in highly trained individuals. The variant rs1474347 located in Interleukin 6 (IL6) was the only variant with a false discovery rate < 0.05 and was found to be associated with gains in VO2 max (additional 4.016 mL/(kg min) for each G allele inherited) after training in the Gene SMART cohort. In summary, this study found further evidence to suggest that genetic variance can influence training response in a moderately trained cohort and provides an example of the potential application of genomic research in the assessment of exercise trait response.


Subject(s)
Adaptation, Physiological/genetics , Athletic Performance/physiology , Exercise/physiology , Physical Endurance/genetics , Adult , Genome, Human/genetics , Genotype , Humans , Lactic Acid/metabolism , Male , Polymorphism, Single Nucleotide/genetics
5.
Hum Genomics ; 14(1): 2, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31915071

ABSTRACT

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a cerebral small vessel disease caused by mutations in the NOTCH3 gene. Our laboratory has been undertaking genetic diagnostic testing for CADASIL since 1997. Work originally utilised Sanger sequencing methods targeting specific NOTCH3 exons. More recently, next-generation sequencing (NGS)-based technologies such as a targeted gene panel and whole exome sequencing (WES) have been used for improved genetic diagnostic testing. In this study, data from 680 patient samples was analysed for 764 tests utilising 3 different sequencing technologies. Sanger sequencing was performed for 407 tests, a targeted NGS gene panel which includes NOTCH3 exonic regions accounted for 354 tests, and WES with targeted analysis was performed for 3 tests. In total, 14.7% of patient samples (n = 100/680) were determined to have a mutation. Testing efficacy varied by method, with 10.8% (n = 44/407) of tests using Sanger sequencing able to identify mutations, with 15.8% (n = 56/354) of tests performed using the NGS custom panel successfully identifying mutations and a likely non-NOTCH3 pathogenic variant (n = 1/3) identified through WES. Further analysis was then performed through stratification of the number of mutations detected at our facility based on the number of exons, level of pathogenicity and the classification of mutations as known or novel. A systematic review of NOTCH3 mutation testing data from 1997 to 2017 determined the diagnostic rate of pathogenic findings and found the NGS-customised panel increases our ability to identify disease-causing mutations in NOTCH3.


Subject(s)
CADASIL/diagnosis , Exome Sequencing/methods , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , Molecular Diagnostic Techniques/methods , Mutation , Receptor, Notch3/genetics , CADASIL/genetics , Female , Humans , Male , Middle Aged
6.
PLoS One ; 14(11): e0224847, 2019.
Article in English | MEDLINE | ID: mdl-31730669

ABSTRACT

The implementation and popularity of next generation sequencing (NGS) has led to the development of various rapid whole mitochondrial genome sequencing techniques. We summarise an efficient and cost-effective NGS approach for mitochondrial genomic DNA in humans using the Ion Torrent platform, and further discuss our bioinformatics pipeline for streamlined variant calling. Ion 316 chips were utilised with the Ion Torrent semi-conductor platform Personal Genome Machine (PGM) to perform tandem sequencing of mitochondrial genomes from the core pedigree (n = 315) of the Norfolk Island Health Study. Key improvements from commercial methods focus on the initial PCR step, which currently requires extensive optimisation to ensure the accurate and reproducible elongation of each section of the complete mitochondrial genome. Dual-platform barcodes were incorporated into our protocol thereby extending its potential application onto Illumina-based systems. Our bioinformatics pipeline consists of a modified version of GATK best practices tailored for mitochondrial genomic data. When compared with current commercial methods, our method, termed high throughput mitochondrial genome sequencing (HTMGS), allows high multiplexing of samples and the use of alternate library preparation reagents at a lower cost per sample (~1.7 times) when compared to current commercial methodologies. Our HTMGS methodology also provides robust mitochondrial sequencing data (>450X average coverage) that can be applied and modified to suit various study designs. On average, we were able to identify ~30 variants per sample with 572 variants observed across 315 samples. We have developed a high throughput sequencing and analysis method targeting complete mitochondrial genomes; with the potential to be platform agnostic with analysis options that adhere to current best practices.


Subject(s)
Genome, Mitochondrial , High-Throughput Nucleotide Sequencing , DNA, Mitochondrial/genetics , Genetic Variation , Humans , Quality Control
7.
Eur J Paediatr Neurol ; 23(3): 438-447, 2019 May.
Article in English | MEDLINE | ID: mdl-30928199

ABSTRACT

BACKGROUND: Pathogenic variants in SCN2A are associated with various neurological disorders including epilepsy, autism spectrum disorder and intellectual disability. Few reports have recently described SCN2A-associated episodic ataxia (EA). Our study identifies its broader clinical and genetic spectrum, and describes pharmacological approaches. RESULTS: We report 21 patients with SCN2A-associated EA, of which 9 are unpublished cases. The large majority of patients present with epileptic seizures (18/21, 86%), often starting within the first three months of life (12/18, 67%). In contrast, onset of episodic ataxia ranged from 10 months to 14 years of age. The frequency of EA episodes ranged from brief, daily events up to 1-2 episodes per year each lasting several weeks. Potential triggers include minor head traumas and sleep deprivation. Cognitive outcome is favorable in most patients with normal or mildly impaired cognitive development in 17/21 patients (81%). No clear genotype-phenotype correlations were identified in this cohort. However, two mutational hotspots were identified, i.e. 7/21 patients (33%) harbor the identical pathogenic variant p.A263V, whereas 5/21 (24%) carry pathogenic variants that affect the S4 segment and its cytoplasmic loop within the domain IV. In addition, we identified six novel pathogenic variants in SCN2A. While acetazolamide was previously reported as beneficial in SCN2A-associated EA in one case, our data show a conflicting response in 8 additional patients treated with acetazolamide: three of them profited from acetazolamide treatment, while 5/8 did not. CONCLUSIONS: Our study describes the heterogeneous clinical spectrum of SCN2A-associated EA, identifies two mutational hotspots and shows positive effects of acetazolamide in about 50%.


Subject(s)
Ataxia/genetics , NAV1.2 Voltage-Gated Sodium Channel/genetics , Acetazolamide/therapeutic use , Adult , Anticonvulsants/therapeutic use , Ataxia/drug therapy , Cohort Studies , Female , Humans , Infant , Male , Mutation
8.
BMC Genet ; 16: 136, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26628212

ABSTRACT

BACKGROUND: Located in the Pacific Ocean between Australia and New Zealand, the unique population isolate of Norfolk Island has been shown to exhibit increased prevalence of metabolic disorders (type-2 diabetes, cardiovascular disease) compared to mainland Australia. We investigated this well-established genetic isolate, utilising its unique genomic structure to increase the ability to detect related genetic markers. A pedigree-based genome-wide association study of 16 routinely collected blood-based clinical traits in 382 Norfolk Island individuals was performed. RESULTS: A striking association peak was located at chromosome 2q37.1 for both total bilirubin and direct bilirubin, with 29 SNPs reaching statistical significance (P < 1.84 × 10(-7)). Strong linkage disequilibrium was observed across a 200 kb region spanning the UDP-glucuronosyltransferase family, including UGT1A1, an enzyme known to metabolise bilirubin. Given the epidemiological literature suggesting negative association between CVD-risk and serum bilirubin we further explored potential associations using stepwise multivariate regression, revealing significant association between direct bilirubin concentration and type-2 diabetes risk. In the Norfolk Island cohort increased direct bilirubin was associated with a 28% reduction in type-2 diabetes risk (OR: 0.72, 95% CI: 0.57-0.91, P = 0.005). When adjusted for genotypic effects the overall model was validated, with the adjusted model predicting a 30% reduction in type-2 diabetes risk with increasing direct bilirubin concentrations (OR: 0.70, 95% CI: 0.53-0.89, P = 0.0001). CONCLUSIONS: In summary, a pedigree-based GWAS of blood-based clinical traits in the Norfolk Island population has identified variants within the UDPGT family directly associated with serum bilirubin levels, which is in turn implicated with reduced risk of developing type-2 diabetes within this population.


Subject(s)
Bilirubin/blood , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Glucuronosyltransferase/genetics , Haplotypes/genetics , Alleles , Base Sequence , Cardiovascular Diseases/complications , Cardiovascular Diseases/genetics , Chromosomes, Human, Pair 2/genetics , Diabetes Mellitus, Type 2/enzymology , Genes, Recessive , Genome-Wide Association Study , Humans , Inheritance Patterns/genetics , Linkage Disequilibrium , Melanesia , Metabolic Syndrome/complications , Metabolic Syndrome/genetics , Molecular Sequence Annotation , Molecular Sequence Data , Polymorphism, Single Nucleotide/genetics , Risk Factors
9.
Hum Genet ; 134(10): 1079-87, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26220684

ABSTRACT

Migraine has been defined as a common disabling primary headache disorder. Epidemiology studies have provided with the undeniable evidence of genetic components as active players in the development of the disease under a polygenic model in which multiple risk alleles exert modest individual effects. Our objective was to test the contribution of a polygenic effect to migraine risk in the Norfolk Island population using a panel of SNPs reported to be disease associated in published migraine GWAS. We also investigated whether individual SNPs were associated with gene expression levels measured in whole blood. Polygenic scores were calculated in a total of 285 related individuals (74 cases, 211 controls) from the Norfolk Island using 51 SNPs previously reported to be associated with migraine in published GWAS. The association between polygenic score and migraine case-control status was tested using logistic regression. Results indicate that a migraine polygenic risk score was associated with migraine case-control status in this population (P = 0.016). This supports the hypothesis that multiple SNPs with weak effects collectively contribute to migraine risk in this population. Amongst the SNPs included in the polygenic model, four were associated with the expression of the USMG5 gene, including rs171251 (P = 0.012). Results from this study provide evidence for a polygenic contribution to migraine risk in an isolated population and highlight specific SNPs that regulate the expression of USMG5, a gene critical for mitochondrial function.


Subject(s)
Migraine Disorders/genetics , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Case-Control Studies , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Melanesia , Quantitative Trait Loci
10.
J Hum Hypertens ; 29(2): 99-104, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25055800

ABSTRACT

Irregular atrial pressure, defective folate and cholesterol metabolism contribute to the pathogenesis of hypertension. However, little is known about the combined roles of the methylenetetrahydrofolate reductase (MTHFR), apolipoprotein-E (ApoE) and angiotensin-converting enzyme (ACE) genes, which are involved in metabolism and homeostasis. The objective of this study is to investigate the association of the MTHFR 677 C>T and 1298A>C, ACE insertion-deletion (I/D) and ApoE genetic polymorphisms with hypertension and to further explore the epistasis interactions that are involved in these mechanisms. A total of 594 subjects, including 348 normotensive and 246 hypertensive ischemic stroke subjects were recruited. The MTHFR 677 C>T and 1298A>C, ACE I/D and ApoEpolymorphisms were genotyped and the epistasis interaction were analyzed. The MTHFR 677 C>T and ApoE polymorphisms demonstrated significant associations with susceptibility to hypertension in multiple logistic regression models, multifactor dimensionality reduction and a classification and regression tree. In addition, the logistic regression model demonstrated that significant interactions between the ApoE E3E3, E2E4, E2E2 and MTHFR 677 C>T polymorphisms existed. In conclusion, the results of this epistasis study indicated significant association between the ApoE and MTHFR polymorphisms and hypertension.


Subject(s)
Apolipoproteins E/genetics , Epistasis, Genetic , Hypertension/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Peptidyl-Dipeptidase A/genetics , Adult , Blood Pressure/genetics , Case-Control Studies , Cholesterol/blood , Female , Folic Acid/blood , Humans , Hypertension/blood , Male , Middle Aged , Polymorphism, Genetic , Signal Transduction/genetics
11.
Mol Biol Rep ; 40(9): 5483-90, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23918043

ABSTRACT

Here, we investigate the genetic basis of human memory in healthy individuals and the potential role of two polymorphisms, previously implicated in memory function. We have explored aspects of retrospective and prospective memory including semantic, short term, working and long-term memory in conjunction with brain derived neurotrophic factor (BDNF) and tumor necrosis factor-alpha (TNF-α). The memory scores for healthy individuals in the population were obtained for each memory type and the population was genotyped via restriction fragment length polymorphism for the BDNF rs6265 (Val66Met) SNP and via pyrosequencing for the TNF-α rs113325588 SNP. Using univariate ANOVA, a significant association of the BDNF polymorphism with visual and spatial memory retention and a significant association of the TNF-α polymorphism was observed with spatial memory retention. In addition, a significant interactive effect between BDNF and TNF-α polymorphisms was observed in spatial memory retention. In practice visual memory involves spatial information and the two memory systems work together, however our data demonstrate that individuals with the Val/Val BDNF genotype have poorer visual memory but higher spatial memory retention, indicating a level of interaction between TNF-α and BDNF in spatial memory retention. This is the first study to use genetic analysis to determine the interaction between BDNF and TNF-α in relation to memory in normal adults and provides important information regarding the effect of genetic determinants and gene interactions on human memory.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Memory/physiology , Polymorphism, Single Nucleotide/genetics , Space Perception/physiology , Tumor Necrosis Factor-alpha/genetics , Analysis of Variance , Base Sequence , Brain-Derived Neurotrophic Factor/physiology , Genotype , Humans , Molecular Sequence Data , Polymorphism, Restriction Fragment Length , Sequence Analysis, DNA , Tumor Necrosis Factor-alpha/physiology
12.
Gene ; 528(2): 343-6, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-23911303

ABSTRACT

Migraine is a common neurological disorder characterised by temporary disabling attacks of severe head pain and associated disturbances. There is significant evidence to suggest a genetic aetiology to the disease however few causal mutations have been conclusively linked to the migraine subtypes Migraine with (MA) or without Aura (MO). The Potassium Channel, Subfamily K, member 18 (KCNK18) gene, coding the potassium channel TRESK, is the first gene in which a rare mutation resulting in a non-functional truncated protein has been identified and causally linked to MA in a multigenerational family. In this study, three common polymorphisms in the KCNK18 gene were analysed for genetic variation in an Australian case-control migraine population consisting of 340 migraine cases and 345 controls. No association was observed for the polymorphisms examined with the migraine phenotype or with any haplotypes across the gene. Therefore even though the KCNK18 gene is the only gene to be causally linked to MA our studies indicate that common genetic variation in the gene is not a contributor to MA.


Subject(s)
Migraine Disorders/genetics , Polymorphism, Single Nucleotide , Potassium Channels/genetics , Australia , Case-Control Studies , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Haplotypes , Humans , Male , Middle Aged , Sequence Analysis, DNA
13.
Int J Biomed Sci ; 9(1): 1-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23675283

ABSTRACT

Migraine is a common genetically linked neurovascular disorder. Approximately ∼12% of the Caucasian population are affected including 18% of adult women and 6% of adult men (1, 2). A notable female bias is observed in migraine prevalence studies with females affected ∼3 times more than males and is credited to differences in hormone levels arising from reproductive achievements. Migraine is extremely debilitating with wide-ranging socioeconomic impact significantly affecting people's health and quality of life. A number of neurotransmitter systems have been implicated in migraine, the most studied include the serotonergic and dopaminergic systems. Extensive genetic research has been carried out to identify genetic variants that may alter the activity of a number of genes involved in synthesis and transport of neurotransmitters of these systems. The biology of the Glutamatergic system in migraine is the least studied however there is mounting evidence that its constituents could contribute to migraine. The discovery of antagonists that selectively block glutamate receptors has enabled studies on the physiologic role of glutamate, on one hand, and opened new perspectives pertaining to the potential therapeutic applications of glutamate receptor antagonists in diverse neurologic diseases. In this brief review, we discuss the biology of the Glutamatergic system in migraine outlining recent findings that support a role for altered Glutamatergic neurotransmission from biochemical and genetic studies in the manifestation of migraine and the implications of this on migraine treatment.

14.
Gene ; 515(1): 187-92, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23237777

ABSTRACT

Migraine is a common neurovascular brain disorder characterised by recurrent attacks of severe headache that may be accompanied by various neurological symptoms. Migraine is thought to result from activation of the trigeminovascular system followed by vasodilation of pain-producing intracranial blood vessels and activation of second-order sensory neurons in the trigeminal nucleus caudalis. Calcitonin gene-related peptide (CGRP) is a mediator of neurogenic inflammation and the most powerful vasodilating neuropeptide, and has been implicated in migraine pathophysiology. Consequently, genes involved in CGRP synthesis or CGRP receptor genes may play a role in migraine and/or increase susceptibility. This study investigates whether variants in the gene that encodes CGRP, calcitonin-related polypeptide alpha (CALCA) or in the gene that encodes a component of its receptor, receptor activity modifying protein 1 (RAMP1), are associated with migraine pathogenesis and susceptibility. The single nucleotide polymorphisms (SNPs) rs3781719 and rs145837941 in the CALCA gene, and rs3754701 and rs7590387 at the RAMP1 locus, were analysed in an Australian Caucasian population of migraineurs and matched controls. Although we find no significant association of any of the SNPs tested with migraine overall, we detected a nominally significant association (p=0.031) of the RAMP1 rs3754701 variant in male migraine subjects, although this is non-significant after Bonferroni correction for multiple testing.


Subject(s)
Calcitonin/genetics , Genetic Predisposition to Disease , Migraine Disorders/genetics , Protein Precursors/genetics , Receptor Activity-Modifying Protein 1/genetics , Alleles , Calcitonin Gene-Related Peptide , Case-Control Studies , Female , Genotype , Humans , Male , Migraine Disorders/metabolism , Polymorphism, Single Nucleotide
15.
Mol Genet Genomics ; 287(11-12): 837-44, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23052833

ABSTRACT

Migraine is a common neurological disorder characterised by debilitating head pain and an assortment of additional symptoms which can include nausea, emesis, photophobia, phonophobia and occasionally visual sensory disturbances. Migraine is a complex disease caused by an interplay between predisposing genetic variants and environmental factors. It affects approximately 12 % of studied Caucasian populations with affected individuals being predominantly female. Genes involved in neurological, vascular or hormonal pathways have all been implicated in predisposition towards developing migraine. All of these are nuclear encoded genes, but given the role of mitochondria in a number of neurological disorders and in energy production it is possible that mitochondrial variants may play a role in the pathogenesis of this disease. Mitochondrial DNA has been a useful tool for studying population genetics and human genetic diseases due to the clear inheritance shown through successive generations. Given the clear gender bias found in migraine patients it may be important to investigate X-linked inheritance and mitochondrial-related variants in this disorder. This paper explores the possibility that mitochondrial DNA changes may play a role in migraine. Few variants in the mitochondrial genome have so far been investigated in migraine and new studies should be aimed towards investigating the role of mitochondrial DNA in this common disorder.


Subject(s)
DNA, Mitochondrial , Migraine Disorders/etiology , Mitochondria/genetics , Calcium/metabolism , Female , Genes, X-Linked , Genetic Predisposition to Disease , Genome, Mitochondrial , Humans , Magnetic Resonance Spectroscopy/methods , Migraine Disorders/genetics , Mitochondria/metabolism
16.
Gene ; 506(1): 135-40, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-22771913

ABSTRACT

Human memory is a complex neurocognitive process. By combining psychological and molecular genetics expertise, we examined the APOE ε4 allele, a known risk factor for Alzheimer's disease, and the COMT Val 158 polymorphism, previously implicated in schizophrenia, for association with lowered memory functioning in healthy adults. To assess memory type we used a range of memory tests of both retrospective and prospective memory. Genotypes were determined using RFLP analysis and compared with mean memory scores using univariate ANOVAs. Despite a modest sample size (n=197), our study found a significant effect of the APOE ε4 polymorphism in prospective memory. Supporting our hypothesis, a significant difference was demonstrated between genotype groups for means of the Comprehensive Assessment of Prospective Memory total score (p=0.036; ε4 alleles=1.99; all other alleles=1.86). In addition, we demonstrate a significant interactive effect between the APOE ε4 and COMT polymorphisms in semantic memory. This is the first study to investigate both APOE and COMT genotypes in relation to memory in non-pathological adults and provides important information regarding the effect of genetic determinants on human memory.


Subject(s)
Apolipoproteins E/genetics , Apolipoproteins E/physiology , Catechol O-Methyltransferase/genetics , Catechol O-Methyltransferase/physiology , Memory/physiology , Adolescent , Adult , Apolipoprotein E4/genetics , Female , Gene Frequency , Genotype , Heterozygote , Homozygote , Humans , Male , Memory, Episodic , Memory, Long-Term/physiology , Memory, Short-Term/physiology , Middle Aged , Models, Genetic , Models, Psychological , Young Adult
17.
J Headache Pain ; 13(7): 513-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22752568

ABSTRACT

Migraine is a painful and debilitating, neurovascular disease. Current migraine head pain treatments work with differing efficacies in migraineurs. The opioid system plays an important role in diverse biological functions including analgesia, drug response and pain reduction. The A118G single nucleotide polymorphism (SNP) in exon 1 of the µ-opioid receptor gene (OPRM1) has been associated with elevated pain responses and decreased pain threshold in a variety of populations. The aim of the current preliminary study was to test whether genotypes of the OPRM1 A118G SNP are associated with head pain severity in a clinical cohort of female migraineurs. This was a preliminary study to determine whether genotypes of the OPRM1 A118G SNP are associated with head pain severity in a clinical cohort of female migraineurs. A total of 153 chronic migraine with aura sufferers were assessed for migraine head pain using the Migraine Disability Assessment Score instrument and classified into high and low pain severity groups. DNA was extracted and genotypes obtained for the A118G SNP. Logistic regression analysis adjusting for age effects showed the A118G SNP of the OPRM1 gene to be significantly associated with migraine pain severity in the test population (P = 0.0037). In particular, G118 allele carriers were more likely to be high pain sufferers compared to homozygous carriers of the A118 allele (OR = 3.125, 95 % CI = 1.41, 6.93, P = 0.0037). These findings suggest that A118G genotypes of the OPRM1 gene may influence migraine-associated head pain in females. Further investigations are required to fully understand the effect of this gene variant on migraine head pain including studies in males and in different migraine subtypes, as well as in response to head pain medication.


Subject(s)
Genetic Predisposition to Disease/genetics , Migraine with Aura/genetics , Pain/genetics , Polymorphism, Single Nucleotide , Receptors, Opioid, mu/genetics , Adult , Cohort Studies , Female , Genotype , Humans , Middle Aged , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction
18.
Mutat Res ; 732(1-2): 3-8, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22373597

ABSTRACT

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary disease of small vessel caused by mutations in the NOTCH3 gene (NCBI Gene ID: 4854) located on chromosome 19p13.1. NOTCH3 consists of 33 exons which encode a protein of 2321 amino acids. Exons 3 and 4 were found to be mutation hotspots, containing more than 65% of all CADASIL mutations. We performed direct sequencing on an ABI 3130 Genetic Analyser to screen for mutations and polymorphisms on 300 patients who were clinically suspected to have CADASIL. First, exons 3 and 4 were screened in NOTCH3 and if there were no variations found, then extended CADASIL testing (exons 2, 11, 18 and 19) was offered to patients. Here we report two novel non-synonymous mutations identified in the NOTCH3 gene. The first mutation, located in exon 4 was found in a 49-year-old female and causes an alanine to valine amino acid change at position 202 (605C>T). The second mutation, located in exon 11, was found in a 66-year-old female and causes a cysteine to arginine amino acid change at position 579 (1735T>C). We also report a 46-year-old male with a known polymorphism Thr101Thr (rs3815188) and an unreported polymorphism NM_000435.2:c.679+60G>A observed in intron 4 of the NOTCH3 gene. Although Ala202Ala (rs1043994) is a common polymorphism in the NOTCH3 gene, our reported novel mutation (Ala202Val) causes an amino acid change at the same locus. Our other reported mutation (Cys579Arg) correlates well with other known mutations in NOTCH3, as the majority of the CADASIL-associated mutations in NOTCH3 generally occur in the EGF-like (epidermal growth factor-like) repeat domain, causing a change in the number of cysteine residues. The intronic polymorphism NM_000435.2:c.679+60G>A lies close to the intron-exon boundary and may affect the splicing mechanism in the NOTCH3 gene.


Subject(s)
CADASIL/genetics , Receptors, Notch/genetics , Aged , Amino Acid Substitution , DNA Mutational Analysis , Female , Genetic Association Studies , Humans , Introns , Male , Middle Aged , Polymorphism, Genetic , Receptor, Notch3
19.
Neurogenetics ; 13(1): 97-101, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22294494

ABSTRACT

Investigations into migraine genetics have suggested that susceptibility loci exist on the X chromosome. These reports are supported by evidence that demonstrates male probands as having a higher proportion of affected first-degree relatives as well as the female preponderance of 3:1 that the disorder displays. We have previously implicated the Xq24-28 locus in migraine using two independent multigenerational Australian pedigrees that demonstrated excess allele sharing at the Xq24, Xq27 and Xq28 loci. Here, we expand this work to investigate a further six independent migraine pedigrees using 11 microsatellite markers spanning the Xq27­28 region. Furthermore, 11 candidate genes are investigated in an Australian case-control cohort consisting of 500 cases and 500 controls. Microsatellite analysis showed evidence of excess allele sharing to the Xq27 marker DXS8043 (LOD* 1.38 P00.005) in MF879 whilst a second independent pedigree showed excess allele sharing to DXS8061 at Xq28 (LOD* 1.5 P00.004). Furthermore, analysis of these key markers in a case control cohort showed significant association to migraine in females at the DXS8043 marker (T1 P00.009) and association with MO at DXS8061 (T1 P00.05). Further analysis of 11 key genes across these regions showed significant association of a three-marker risk haplotype in the NSDHL gene at Xq28 (P00.0082). The results of this study add further support to the presence of migraine susceptibility loci on chromosome Xq27 and Xq28 as well as point to potential candidate genes in the regions that warrant further investigation.


Subject(s)
Chromosomes, Human, X/genetics , Genetic Predisposition to Disease , Migraine Disorders/genetics , Australia , Case-Control Studies , Female , Genotype , Haplotypes , Humans , Male , Microsatellite Repeats , Pedigree , Polymorphism, Single Nucleotide
20.
Article in English | MEDLINE | ID: mdl-22229040

ABSTRACT

Objective. To identify whether a standardised Echinacea formulation is effective in the prevention of respiratory and other symptoms associated with long-haul flights. Methods. 175 adults participated in a randomised, double-blind placebo-controlled trial travelling back from Australia to America, Europe, or Africa for a period of 1-5 weeks on commercial flights via economy class. Participants took Echinacea (root extract, standardised to 4.4 mg alkylamides) or placebo tablets. Participants were surveyed before, immediately after travel, and at 4 weeks after travel regarding upper respiratory symptoms and travel-related quality of life. Results. Respiratory symptoms for both groups increased significantly during travel (P < 0.0005). However, the Echinacea group had borderline significantly lower respiratory symptom scores compared to placebo (P = 0.05) during travel. Conclusions. Supplementation with standardised Echinacea tablets, if taken before and during travel, may have preventive effects against the development of respiratory symptoms during travel involving long-haul flights.

SELECTION OF CITATIONS
SEARCH DETAIL
...