Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 17870, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37857658

ABSTRACT

The implementation and integration of wastewater-based epidemiology constitutes a valuable addition to existing pathogen surveillance systems, such as clinical surveillance for SARS-CoV-2. In the Netherlands, SARS-CoV-2 variant circulation is monitored by performing whole-genome sequencing on wastewater samples. In this manuscript, we describe the detection of an AY.43 lineage (Delta variant) amid a period of BA.5 (Omicron variant) dominance in wastewater samples from two wastewater treatment plants (WWTPs) during the months of August and September of 2022. Our results describe a temporary emergence, which was absent in samples from other WWTPs, and which coincided with peaks in viral load. We show how these lineage estimates can be traced back to lineage-specific substitution patterns. The absence of this variant from reported clinical data, but high associated viral loads suggest cryptic transmission. Our findings highlight the additional value of wastewater surveillance for generating insights into circulating pathogens.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Wastewater , Wastewater-Based Epidemiological Monitoring
2.
Sci Rep ; 11(1): 23138, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34848796

ABSTRACT

Carriage of Neisseria meningitidis is an accepted endpoint in monitoring meningococcal vaccines effects. We have assessed N. meningitidis and vaccine-type genogroup carriage prevalence in college students at the time of MenACWY vaccine introduction in the Netherlands, and evaluated the feasibility of saliva sampling for the surveillance of carriage. For this, paired saliva and oropharyngeal samples collected from 299 students were cultured for meningococcus. The DNA extracted from all bacterial growth was subjected to qPCRs quantifying meningococcal and genogroup-specific genes presence. Samples negative by culture yet positive for qPCR were cultured again for meningococcus. Altogether 74 (25%) of students were identified as meningococcal carrier by any method. Sixty-one students (20%) were identified as carriers with qPCR. The difference between number of qPCR-positive oropharyngeal (n = 59) and saliva (n = 52) samples was not significant (McNemar's test, p = 0.07). Meningococci were cultured from 72 students (24%), with a significantly higher (p < 0.001) number of oropharyngeal (n = 70) compared with saliva (n = 54) samples. The prevalence of genogroups A, B, C, W, and Y was none, 9%, 1%, 1% and 6%, respectively, and 8% of students carried MenACWY vaccine-type genogroup meningococci. Saliva is easy to collect and when combined with qPCR detection can be considered for meningococcal carriage studies.


Subject(s)
Meningococcal Infections/diagnosis , Meningococcal Infections/microbiology , Neisseria meningitidis, Serogroup B/genetics , Neisseria meningitidis/genetics , Oropharynx/metabolism , Saliva/microbiology , Adolescent , Adult , Carrier State/microbiology , Cross-Sectional Studies , Female , Genotype , Humans , Male , Meningococcal Vaccines , Netherlands , Prevalence , Risk Factors , Students , Vaccines, Conjugate , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...