Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Commun Signal ; 22(1): 425, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223652

ABSTRACT

BACKGROUND: Increased cancer stem cell (CSC) content and SOX2 overexpression are common features in the development of resistance to therapy in hormone-dependent breast cancer, which remains an important clinical challenge. SOX2 has potential as biomarker of resistance to treatment and as therapeutic target, but targeting transcription factors is also challenging. Here, we examine the potential inhibitory effect of different polyoxometalate (POM) derivatives on SOX2 transcription factor in tamoxifen-resistant breast cancer cells. METHODS: Various POM derivatives were synthesised and characterised by infrared spectra, powder X-ray diffraction pattern and nuclear magnetic resonance spectroscopy. Estrogen receptor (ER) positive breast cancer cells, and their counterparts, which have developed resistance to the hormone therapy tamoxifen, were treated with POMs and their consequences assessed by gel retardation and chromatin immunoprecipitation to determine SOX2 binding to DNA. Effects on proliferation, migration, invasion and tumorigenicity were monitored and quantified using microscopy, clone formation, transwell, wound healing assays, flow cytometry and in vivo chick chorioallantoic membrane (CAM) models. Generation of lentiviral stable gene silencing and gene knock-out using CRISPR-Cas9 genome editing were applied to validate the inhibitory effects of the selected POM. Cancer stem cell subpopulations were quantified by mammosphere formation assays, ALDEFLUOR activity and CD44/CD24 stainings. Flow cytometry and western blotting were used to measure reactive oxygen species (ROS) and apoptosis. RESULTS: POMs blocked in vitro binding activity of endogenous SOX2. [P2W18O62]6- (PW) Wells-Dawson-type anion was the most effective at inhibiting proliferation in various cell line models of tamoxifen resistance. 10 µM PW also reduced cancer cell migration and invasion, as well as SNAI2 expression levels. Treatment of tamoxifen-resistant cells with PW impaired tumour formation by reducing CSC content, in a SOX2-dependent manner, which led to stem cell depletion in vivo. Mechanistically, PW induced formation of reactive oxygen species (ROS) and inhibited Bcl-2, leading to the death of tamoxifen-resistant cells. PW-treated tamoxifen-resistant cells showed restored sensitivity to tamoxifen. CONCLUSIONS: Together, these observations highlight the potential use of PW as a SOX2 inhibitor and the therapeutic relevance of targeting SOX2 to treat tamoxifen-resistant breast cancer.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , SOXB1 Transcription Factors , Tamoxifen , Tungsten Compounds , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Tamoxifen/pharmacology , Humans , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Tungsten Compounds/pharmacology , Cell Proliferation/drug effects , Cell Movement/drug effects , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Cell Line, Tumor , Animals
2.
Int J Mol Sci ; 23(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35806065

ABSTRACT

Hydroxytyrosol (HT), the main representative of polyphenols of olive oil, has been described as one of the most powerful natural antioxidants, also showing anti-inflammatory, antimicrobial, cardioprotective and anticancer activity in different type of cancers, but has been little studied in hematological neoplasms. The objective of this work was to evaluate the anticancer potential of HT in acute human leukemia T cells (Jurkat and HL60) and the anti-inflammatory potential in murine macrophages (Raw264.7). For this, cytotoxicity tests were performed for HT, showing IC50 values, at 24 h, for Jurkat, HL60 and Raw264.7 cells, of 27.3 µg·mL-1, 109.8 µg·mL-1 and 45.7 µg·mL-1, respectively. At the same time, HT caused cell arrest in G0/G1 phase in both Jurkat and HL60 cells by increasing G0/G1 phase and significantly decreasing S phase. Apoptosis and cell cycle assays revealed an antiproliferative effect of HT, decreasing the percentage of dividing cells and increasing apoptosis. Furthermore, HT inhibited the PI3K signaling pathway and, consequently, the MAPK pathway was activated. Inflammation tests revealed that HT acts as an anti-inflammatory agent, reducing NO levels in Raw264.7 cells previously stimulated by lipopolysaccharide (LPS). These processes were confirmed by the changes in the expression of the main markers of inflammation and cancer. In conclusion, HT has an anticancer and anti-inflammatory effect in the cell lines studied, which were Raw264.7, Jurkat, and HL60, and could be used as a natural drug in the treatment of liquid cancers, leukemias, myelomas and lymphomas.


Subject(s)
Chaperonin 60/metabolism , Olea , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Apoptosis , Humans , Inflammation/drug therapy , Mice , Phenylethyl Alcohol/analogs & derivatives , Phosphatidylinositol 3-Kinases , Polyphenols/pharmacology , Polyphenols/therapeutic use , Proto-Oncogene Proteins c-akt , Signal Transduction
3.
Methods Mol Biol ; 2471: 301-307, 2022.
Article in English | MEDLINE | ID: mdl-35175605

ABSTRACT

Tissue culture has evolved considerably over the last few years, including cell culture in three dimensions, organoids, cocultures of different cell types and the use of diverse types of matrices in an attempt to mimic conditions that more closely resemble those found in the original tissue or organ. In this chapter, we describe how patient-derived breast tissue can be cultured on sponges for several days, maintaining their original architecture and with the capacity to respond to treatments. This protocol facilitates the study of the tissue responses without the need for extensive tissue manipulation, cell digestion or use of a biomaterial as scaffold, while maintaining the stroma and extracellular matrix organization. This method has the potential to improve preclinical testing by contributing to provide more accurate data reflecting cell-cell and cell-matrix interactions, tumor microenvironment, drug effects or stem cell function in normal- and pathophysiology of the breast.


Subject(s)
Breast Neoplasms , Organoids , Breast Neoplasms/pathology , Cell Culture Techniques/methods , Female , Humans , Organoids/metabolism , Stem Cells , Tumor Microenvironment
4.
Molecules ; 25(18)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947962

ABSTRACT

Natural products have a significant role in the development of new drugs, being relevant the pentacyclic triterpenes extracted from Olea europaea L. Anticancer effect of uvaol, a natural triterpene, has been scarcely studied. The aim of this study was to understand the anticancer mechanism of uvaol in the HepG2 cell line. Cytotoxicity results showed a selectivity effect of uvaol with higher influence in HepG2 than WRL68 cells used as control. Our results show that uvaol has a clear and selective anticancer activity in HepG2 cells supported by a significant anti-migratory capacity and a significant increase in the expression of HSP-60. Furthermore, the administration of this triterpene induces cell arrest in the G0/G1 phase, as well as an increase in the rate of cell apoptosis. These results are supported by a decrease in the expression of the anti-apoptotic protein Bcl2, an increase in the expression of the pro-apoptotic protein Bax, together with a down-regulation of the AKT/PI3K signaling pathway. A reduction in reactive oxygen species (ROS) levels in HepG2 cells was also observed. Altogether, results showed anti-proliferative and pro-apoptotic effect of uvaol on hepatocellular carcinoma, constituting an interesting challenge in the development of new treatments against this type of cancer.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Triterpenes/pharmacology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Movement/drug effects , Cell Survival/drug effects , Hep G2 Cells , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Olea/chemistry , Olea/metabolism , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Triterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL