Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EBioMedicine ; 33: 144-156, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29983349

ABSTRACT

Hypoxia and inflammation are closely intertwined phenomena. Critically ill patients often suffer from systemic inflammatory conditions and concurrently experience short-lived hypoxia. We evaluated the effects of short-term hypoxia on systemic inflammation, and show that it potently attenuates pro-inflammatory cytokine responses during murine endotoxemia. These effects are independent of hypoxia-inducible factors (HIFs), but involve augmented adenosine levels, in turn resulting in an adenosine 2B receptor-mediated post-transcriptional increase of interleukin (IL)-10 production. We translated our findings to humans using the experimental endotoxemia model, where short-term hypoxia resulted in enhanced plasma concentrations of adenosine, augmentation of endotoxin-induced circulating IL-10 levels, and concurrent attenuation of the pro-inflammatory cytokine response. Again, HIFs were shown not to be involved. Taken together, we demonstrate that short-term hypoxia dampens the systemic pro-inflammatory cytokine response through enhanced purinergic signaling in mice and men. These effects may contribute to outcome and provide leads for immunomodulatory treatment strategies for critically ill patients.


Subject(s)
Adenosine/metabolism , Endotoxemia/immunology , Hypoxia/immunology , Interleukin-10/blood , Adenosine/blood , Animals , Disease Models, Animal , Endotoxemia/blood , Endotoxemia/genetics , Humans , Hypoxia/blood , Hypoxia/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Interleukin-10/genetics , Interleukin-10/metabolism , Mice , Receptors, Purinergic P1/metabolism , Up-Regulation
3.
Nat Cell Biol ; 20(2): 211-221, 2018 02.
Article in English | MEDLINE | ID: mdl-29358704

ABSTRACT

For many patients with breast cancer, symptomatic bone metastases appear after years of latency. How micrometastatic lesions remain dormant and undetectable before initiating colonization is unclear. Here, we describe a mechanism involved in bone metastatic latency of oestrogen receptor-positive (ER+) breast cancer. Using an in vivo genome-wide short hairpin RNA screening, we identified the kinase MSK1 as an important regulator of metastatic dormancy in breast cancer. In patients with ER+ breast cancer, low MSK1 expression associates with early metastasis. We show that MSK1 downregulation impairs the differentiation of breast cancer cells, increasing their bone homing and growth capacities. MSK1 controls the expression of genes required for luminal cell differentiation, including the GATA3 and FOXA1 transcription factors, by modulating their promoter chromatin status. Our results indicate that MSK1 prevents metastatic progression of ER+ breast cancer, suggesting that stratifying patients with breast cancer as high or low risk for early relapse based on MSK1 expression could improve prognosis.


Subject(s)
Breast Neoplasms/genetics , GATA3 Transcription Factor/genetics , Hepatocyte Nuclear Factor 3-alpha/genetics , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Adult , Aged , Animals , Biomarkers, Tumor/genetics , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/secondary , Breast Neoplasms/pathology , Cell Differentiation/genetics , Chromatin/genetics , Female , Gene Expression Regulation, Neoplastic , Genome, Human/genetics , Humans , Mice , Middle Aged , Neoplasm Metastasis , Prognosis , RNA, Small Interfering/genetics , Receptors, Estrogen/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...