Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Reprod Toxicol ; 40: 1-7, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23669243

ABSTRACT

Exposure to environmental chemicals may contribute to reproductive disorders, especially when it occurs in critical periods of development. The female reproductive system can be a target for androgens derived from environmental contaminants or pathological conditions. The purpose of this study was to assess the long-term effects of androgens on uterine tissue after maternal exposure limited to the time of gestation and lactation. Pregnant Wistar rats were treated with testosterone propionate (TP) at 0.05 mg/kg, 0.1 mg/kg, 0.2 mg/kg or corn oil (vehicle), s.c., from gestational day 12 until the end of lactation. The results show changes in the pattern of expression of receptors for estrogen, progesterone, and androgen at all doses tested, and decreases in both apoptosis and cell proliferation indices at 0.1 and 0.2 mg/kg. We conclude that early TP exposure, under these experimental conditions, causes changes in cellular and molecular parameters that are essential for normal uterine function in the adult.


Subject(s)
Androgens/toxicity , Prenatal Exposure Delayed Effects , Receptors, Steroid/metabolism , Testosterone Propionate/toxicity , Uterus/drug effects , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Female , Maternal-Fetal Exchange , Pregnancy , Rats , Rats, Wistar , Uterus/cytology , Uterus/metabolism
2.
Cell Tissue Res ; 332(3): 509-22, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18351393

ABSTRACT

Immunohistochemistry was conducted to analyze the cellular localization of alpha(1A)-adrenoceptors along rat and human epididymis. ADR-A, a polyclonal antibody that recognizes the specific C-terminal region of alpha(1A)-adrenoceptors, immunostained this adrenoceptor subtype in smooth muscle cells surrounding the epididymal tubules and interstitial blood vessels and in subpopulations of epithelial cells from adult rat and human caput and cauda epididymidis. The same cell types from rat epididymidis were immunostained by ADR-1, a polyclonal antibody that recognizes a common region of the three alpha(1)-adrenoceptor subtypes, alpha(1A), alpha(1B), and alpha(1D). Immunostaining with both antibodies was also conducted in adult rat and human vas deferens and seminal vesicle used as positive controls because of the abundance of alpha(1A)-adrenoceptors in these tissues. ADR-A- and ADR-1-positive immunostaining was differentially distributed depending on the antibody, method of tissue fixation (Bouin-fixed and fresh frozen tissues), species (rat and human), tissue (caput and cauda epididymidis), and age (immature and adult rats) analyzed. This is the first report immunolocalizing alpha(1A)-adrenoceptor along rat and human epididymis. The presence of this adrenoceptor subtype in epididymal smooth muscle and epithelial cells indicates their contribution to smooth muscle contractile responses and a possible role in the absorptive and/or secretory activities of the epithelium lining the epididymal duct. Taken together, our results should contribute to a better understanding of the physiological role of alpha(1)-adrenoceptors in the epididymidis and the importance of the sympathetic nervous system for male (in)fertility.


Subject(s)
Epididymis/chemistry , Receptors, Adrenergic, alpha-1/analysis , Aged , Aged, 80 and over , Animals , Humans , Immunohistochemistry , Male , Middle Aged , Rats , Rats, Wistar , Receptors, Adrenergic, alpha-1/immunology
3.
Mol Hum Reprod ; 14(2): 85-96, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18204069

ABSTRACT

This study reports the genomic organization of the rhesus alpha(1A)-adrenoceptor gene (ADRA1A). Full-length cloning of rhesus ADRA1A splice variants was achieved by combining PCR screening of a seminal vesicle cDNA library and 5'-RACE assays with total RNA from seminal vesicle. The classical ADRA1A mRNA (ADRA1A_v1) and six full-length ADRA1A splice variants were identified representing transcripts that code for functional (ADRA1A_v1, ADRA1A_v2a, ADRA1A_v3a, ADRA1A_v3d, ADRA1A_v3e) and truncated (ADRA1A_v2c and ADRA1A_v3c) receptor isoforms. Comparative analysis of the deduced amino acid sequence indicated that rhesus ADRA1A_i1 isoform (corresponding to the ADRA1A_v1 transcript) shares high identity to the amino acid sequence present in the classical alpha(1A)-adrenoceptor from human and other mammalian species. Partial nucleotide sequences for rhesus alpha(1B)-(ADRA1B) and alpha(1D)-adrenoceptor (ADRA1D) transcripts were also characterized. RT-PCR studies indicated differential distribution of all ADRA1A-related splice variants as well as ADRA1B and ADRA1D mRNAs, in tissues from rhesus and human male reproductive tract. Immunohistochemistry revealed alpha(1A)-adrenoceptor (ADRA1A_i1) immunostaining in smooth muscle cells and epithelial cells of rhesus efferent ductules, epididymis and seminal vesicle. Taken together the present results demonstrate that the complexity of the splicing mechanisms involved in the regulation of the ADRA1A gene is not restricted to human and is a common characteristic among Old World monkeys.


Subject(s)
Gene Expression Profiling , Receptors, Adrenergic, alpha-1/genetics , Receptors, Adrenergic, alpha-1/metabolism , Alternative Splicing , Amino Acid Sequence , Animals , Cloning, Molecular , Epididymis/metabolism , Humans , Immunohistochemistry , Macaca mulatta , Male , Molecular Sequence Data , Prostate/metabolism , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Seminal Vesicles/metabolism , Testis/metabolism
4.
Biol Reprod ; 76(6): 1103-16, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17344469

ABSTRACT

Beta-defensins are small cationic peptides exhibiting broad spectrum antimicrobial properties. In humans, many beta-defensin genes are located within a cluster on chromosome 8p23. The sperm associated antigen 11 (SPAG11) gene is contained in this cluster and is unusual among the human beta-defensins due to its complex genomic structure and mRNA splicing pattern. Here we report the genomic organization of the Bos taurus SPAG11 gene located on chromosome 27q1.2, within a cluster of beta-defensin genes. The exon structures of the fused bovine SPAG11 gene and of the mosaic transcripts initiated at both A and B promoters were established, including identification of novel exons and transcripts not previously found in primate or rodent. Evolutionary analysis against primate, rodent, canine, and porcine orthologs was performed. In adult bulls SPAG11C, SPAG11E, and SPAG11U mRNAs were detected predominantly in the male reproductive tract, while SPAG11D transcript was detected in reproductive and nonreproductive tissues and SPAG11V and SPAG11W mRNAs were confined to testis. Differential expression of all six transcripts was observed in tissues from fetal and adult bulls, suggesting that similar mRNA splicing mechanisms govern SPAG11 gene expression during pre- and postnatal development. Immunolocalization of SPAG11C and SPAG11D/E was demonstrated in the epithelium of the epididymis and testis, and SPAG11D in association with epididymal spermatozoa. Recombinant full-length SPAG11D protein was strongly antibacterial, while the SPAG11E C-terminal peptide that contains the beta-defensin motif in its structure was somewhat less potent. Taken together, the results suggest that SPAG11 isoforms perform both immune and reproductive functions in cattle.


Subject(s)
Antigens, Surface/genetics , Antigens, Surface/metabolism , Cattle/genetics , Amino Acid Sequence , Animals , Anti-Bacterial Agents/metabolism , Antigens, Surface/physiology , Cattle/metabolism , Gene Expression , Glycopeptides/genetics , Humans , Male , Mice , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Isoforms/physiology , Sequence Homology, Amino Acid , Spermatozoa/metabolism , Testis/metabolism
5.
Cell Tissue Res ; 325(1): 125-33, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16541288

ABSTRACT

Microtubule-associated protein 1B (MAP 1B) is a neuronal cytoskeleton marker with predominant expression in the developing nervous system. The present study provides evidence for the expression of this cytoskeleton protein in non-neuronal and neuronal cells along rat and human efferent ductules and epididymis (initial segment, caput, and cauda). Reverse transcription/polymerase chain reaction and Western blot analysis were used to confirm the presence of MAP 1B (mRNA and protein) in rat tissues. Immunohistochemical studies revealed MAP-1B-positive staining in columnar ciliated cells present in efferent ductules and in narrow cells located in the initial segment, in both rat and human. MAP-1B-positive basal cells, located underneath the columnar cells, were only identified in the initial segment and caput epididymidis of the rat. Qualitative analysis of tissues from 40-day-old and 120-day-old rats indicated that the number of MAP-1B-positive ciliated, narrow, and basal cells per tubule increased with sexual maturation. These immunoreactive cells did not stain for dopamine beta-hydroxylase or acetylcholinesterase, indicating that they were not adrenergic or cholinergic in nature. Immunohistochemical studies also revealed the presence of MAP-1B-positive staining in interstitial nerve fibers in caput and cauda epididymidis from both rat and human. Thus, the expression of MAP 1B is not confined to a specific cell type in rat and human efferent ductules and epididymis. The functional significance of this cytoskeleton protein in tissues from the male reproductive tract requires further investigation.


Subject(s)
Epididymis/cytology , Epididymis/metabolism , Microtubule-Associated Proteins/analysis , Rete Testis/cytology , Rete Testis/metabolism , Animals , Humans , Immunohistochemistry , Male , Rats , Rats, Wistar
6.
Biol Reprod ; 71(5): 1453-60, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15229135

ABSTRACT

The epididymis protein 2 (EP2) gene, the fusion of two ancestral beta-defensin genes, is highly expressed in the epididymis and subject to species-specific regulation at the levels of promoter selection, transcription, and mRNA splicing. EP2 mRNA expression is also androgen dependent, and at least two of the secreted proteins bind spermatozoa. Alternative splicing produces more than 17 different EP2 mRNA variants. In this article, the expression of EP2 variants was profiled in different tissues from the human and rhesus monkey (Macaca mulatta) male reproductive tract using reverse transcriptase-polymerase chain reaction. Different EP2 mRNA variants were identified not only in human and rhesus testis and epididymis but also in the novel sites, seminal vesicle and prostate. Immunolocalization of EP2 protein in epithelial cells from rhesus and human seminal vesicle demonstrated that EP2 transcripts are translated in these tissues. In addition, two novel splicing variants, named EP2R and EP2S, were discovered. EP2C was the only splice variant expressed in all tissues tested from rhesus monkey. However, expression was not detected in human testis or seminal vesicle. For the first time, bactericidal function was demonstrated for EP2C, EP2K, and EP2L. Taken together, the results indicate that EP2 expression is more widespread in the male reproductive tract than realized previously. Whereas the activity of every EP2 variant tested thus far is antibacterial, further investigation may reveal additional physiological roles for EP2 peptides in the primate male reproductive tract.


Subject(s)
Anti-Bacterial Agents/metabolism , Antigens, Surface/physiology , Genitalia, Male/metabolism , Glycopeptides/physiology , Hominidae , Macaca mulatta , Aged , Amino Acid Sequence , Animals , Antigens, Surface/genetics , Antigens, Surface/metabolism , Genetic Variation , Glycopeptides/genetics , Glycopeptides/metabolism , Hominidae/physiology , Humans , Immunohistochemistry , Macaca mulatta/physiology , Male , Middle Aged , Molecular Sequence Data , RNA Splicing , RNA, Messenger/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Species Specificity , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL