Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Chem ; 12: 1381032, 2024.
Article in English | MEDLINE | ID: mdl-38638878

ABSTRACT

ReAV, the inducible Class-3 L-asparaginase from the nitrogen-fixing symbiotic bacterium Rhizobium etli, is an interesting candidate for optimizing its enzymatic potential for antileukemic applications. Since it has no structural similarity to known enzymes with this activity, it may offer completely new ways of approach. Also, as an unrelated protein, it would evade the immunological response elicited by other asparaginases. The crystal structure of ReAV revealed a uniquely assembled protein homodimer with a highly specific C135/K138/C189 zinc binding site in each subunit. It was also shown before that the Zn2+ cation at low and optimal concentration boosts the ReAV activity and improves substrate specificity, which indicates its role in substrate recognition. However, the detailed catalytic mechanism of ReAV is still unknown. In this work, we have applied site-directed mutagenesis coupled with enzymatic assays and X-ray structural analysis to elucidate the role of the residues in the zinc coordination sphere in catalysis. Almost all of the seven ReAV muteins created in this campaign lost the ability to hydrolyze L-asparagine, confirming our predictions about the significance of the selected residues in substrate hydrolysis. We were able to crystallize five of the ReAV mutants and solve their crystal structures, revealing some intriguing changes in the active site area as a result of the mutations. With alanine substitutions of Cys135 or Cys189, the zinc coordination site fell apart and the mutants were unable to bind the Zn2+ cation. Moreover, the absence of Lys138 induced atomic shifts and conformational changes of the neighboring residues from two active-site Ser-Lys tandems. Ser48 from one of the tandems, which is hypothesized to be the catalytic nucleophile, usually changes its hydration pattern in response to the mutations. Taken together, the results provide many useful clues about the catalytic mechanism of the enzyme, allowing one to cautiously postulate a possible enzymatic scenario.

2.
Front Chem ; 12: 1373312, 2024.
Article in English | MEDLINE | ID: mdl-38456185

ABSTRACT

L-Asparaginases, divided into three structural Classes, catalyze the hydrolysis of L-asparagine to L-aspartic acid and ammonia. The members of Class 3, ReAIV and ReAV, encoded in the genome of the nitrogen fixing Rhizobium etli, have the same fold, active site, and quaternary structure, despite low sequence identity. In the present work we examined the biochemical consequences of this difference. ReAIV is almost twice as efficient as ReAV in asparagine hydrolysis at 37°C, with the kinetic KM, kcat parameters (measured in optimal buffering agent) of 1.5 mM, 770 s-1 and 2.1 mM, 603 s-1, respectively. The activity of ReAIV has a temperature optimum at 45°C-55°C, whereas the activity of ReAV, after reaching its optimum at 37°C, decreases dramatically at 45°C. The activity of both isoforms is boosted by 32 or 56%, by low and optimal concentration of zinc, which is bound three times more strongly by ReAIV then by ReAV, as reflected by the KD values of 1.2 and 3.3 µM, respectively. We also demonstrate that perturbation of zinc binding by Lys→Ala point mutagenesis drastically decreases the enzyme activity but also changes the mode of response to zinc. We also examined the impact of different divalent cations on the activity, kinetics, and stability of both isoforms. It appeared that Ni2+, Cu2+, Hg2+, and Cd2+ have the potential to inhibit both isoforms in the following order (from the strongest to weakest inhibitors) Hg2+ > Cu2+ > Cd2+ > Ni2+. ReAIV is more sensitive to Cu2+ and Cd2+, while ReAV is more sensitive to Hg2+ and Ni2+, as revealed by IC50 values, melting scans, and influence on substrate specificity. Low concentration of Cd2+ improves substrate specificity of both isoforms, suggesting its role in substrate recognition. The same observation was made for Hg2+ in the case of ReAIV. The activity of the ReAV isoform is less sensitive to Cl- anions, as reflected by the IC50 value for NaCl, which is eightfold higher for ReAV relative to ReAIV. The uncovered complementary properties of the two isoforms help us better understand the inducibility of the ReAV enzyme.

3.
Plant Physiol Biochem ; 201: 107895, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37478728

ABSTRACT

Glutamate dehydrogenase (GDH) is an enzyme at the crossroad of plant nitrogen and carbon metabolism. GDH catalyzes the conversion of 2-oxoglutarate into glutamate (2OG → Glu), utilizing ammonia as cosubstrate and NADH as coenzyme. The GDH reaction is reversible, meaning that the NAD+-dependent reaction (Glu → 2OG) releases ammonia. In Arabidopsis thaliana, three GDH isoforms exist, AtGDH1, AtGDH2, and AtGDH3. The subject of this work is AtGDH2. Previous reports have suggested that enzymes homologous to AtGDH2 contain a calcium-binding EF-hand motif located in the coenzyme binding domain. Here, we show that while AtGDH2 indeed does bind calcium, the binding occurs elsewhere and the region predicted to be the EF-hand motif has a completely different structure. As the true calcium binding site is > 20 Å away from the active site, it seems to play a structural, rather than catalytic role. We also performed comparative kinetic characterization of AtGDH1 and AtGDH2 using spectroscopic methods and isothermal titration calorimetry, to note that the isoenzymes generally exhibit similar behavior, with calcium having only a minor effect. However, the spatial and temporal changes in the gene expression profiles of the three AtGDH genes point to AtGDH2 as the most prevalent isoform.


Subject(s)
Arabidopsis , Glutamate Dehydrogenase , Glutamate Dehydrogenase/genetics , Glutamate Dehydrogenase/metabolism , Arabidopsis/metabolism , Calcium/metabolism , NAD/metabolism , Ammonia/metabolism , Coenzymes/metabolism , Glutamic Acid/metabolism , Binding Sites , Isoenzymes/genetics , Isoenzymes/metabolism
4.
Acta Crystallogr D Struct Biol ; 79(Pt 8): 775-791, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37494066

ABSTRACT

The genome of Rhizobium etli, a nitrogen-fixing bacterial symbiont of legume plants, encodes two L-asparaginases, ReAIV and ReAV, that have no similarity to the well characterized enzymes of class 1 (bacterial type) and class 2 (plant type). It has been hypothesized that ReAIV and ReAV might belong to the same structural class 3 despite their low level of sequence identity. When the crystal structure of the inducible and thermolabile protein ReAV was solved, this hypothesis gained a stronger footing because the key residues of ReAV are also present in the sequence of the constitutive and thermostable ReAIV protein. High-resolution crystal structures of ReAIV now confirm that it is a class 3 L-asparaginase that is structurally similar to ReAV but with important differences. The most striking differences concern the peculiar hydration patterns of the two proteins, the presence of three internal cavities in ReAIV and the behavior of the zinc-binding site. ReAIV has a high pH optimum (9-11) and a substrate affinity of ∼1.3 mM at pH 9.0. These parameters are not suitable for the direct application of ReAIV as an antileukemic drug, although its thermal stability and lack of glutaminase activity would be of considerable advantage. The five crystal structures of ReAIV presented in this work allow a possible enzymatic scenario to be postulated in which the zinc ion coordinated in the active site is a dispensable element. The catalytic nucleophile seems to be Ser47, which is part of two Ser-Lys tandems in the active site. The structures of ReAIV presented here may provide a basis for future enzyme-engineering experiments to improve the kinetic parameters for medicinal applications.


Subject(s)
Asparaginase , Rhizobium etli , Asparaginase/chemistry , Rhizobium etli/chemistry , Rhizobium etli/genetics , Catalysis , Binding Sites , Plants/metabolism , Zinc
5.
Free Radic Biol Med ; 198: 27-43, 2023 03.
Article in English | MEDLINE | ID: mdl-36738800

ABSTRACT

The mechanisms of one-electron protein oxidation are complicated and still not well-understood. In this work, we investigated the reaction of sensitized photo-oxidation using carboxybenzophenone (CB) as a sensitizer and a PR-10 protein (MtN13) as a quencher, which is intrinsically complicated due to the complex structure of the protein and multiple possibilities of CB attack. To predict and examine the possible reactions precisely, the 3D structure of the MtN13 protein was taken into account. Our crystallographic studies revealed a specific binding of the CB molecule in the protein's hydrophobic cavity, while mass spectrometry identified the amino acid residues (Met, Tyr, Asp and Phe) creating adducts with the sensitizer, thus indicating the sites of 3CB* quenching. In addition, protein aggregation was also observed. The detailed mechanisms of CB quenching by the MtN13 molecule were elucidated by an analysis of transient products by means of time-resolved spectroscopy. The investigation of the transient and stable products formed during the protein photo-oxidation was based on the data obtained from HPLC-MS analysis of model compounds, single amino acids and dipeptides. Our proposed mechanisms of sensitized protein photo-oxidation emphasize the role of a ground state complex between the protein and the sensitizer and indicate several new and specific products arising as a result of one-electron oxidation. Based on the analysis of the transient and stable products, we have demonstrated the influence of neighboring groups, especially in the case of Tyr oxidation, where the tyrosyl radical can be formed via a direct electron transfer from Tyr to CB* or via an intramolecular electron transfer from Tyr to Met radical cation Met > S●+ or thiyl radical CysS● from neighboring oxidized groups.


Subject(s)
Amino Acids , Cysteine , Oxidation-Reduction , Electron Transport
6.
Plant Physiol Biochem ; 187: 37-49, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35947902

ABSTRACT

Serine hydroxymethyltransferase (SHM) is one of the hallmarks of one-carbon metabolism. In plants, isoforms of SHM participate in photorespiration and/or transfer the one-carbon unit from L-serine to tetrahydrofolate (THF), hence producing 5,10-CH2-THF that is needed, e.g., for biosynthesis of methionine, thymidylate, and purines. These links highlight the importance of SHM activity in DNA biogenesis, its epigenetic methylations, and in stress responses. Plant genomes encode several SHM isoforms that localize to cytosol, mitochondria, plastids, and nucleus. In this work, we present a thorough functional and structural characterization of all seven SHM isoforms from Arabidopsis thaliana (AtSHM1-7). In particular, we analyzed tissue-specific expression profiles of the AtSHM genes. We also compared catalytic properties of the active AtSHM1-4 in terms of catalytic efficiency in both directions and inhibition by the THF substrate. Despite numerous attempts to rescue the SHM activity of AtSHM5-7, we failed, which points towards different physiological functions of these isoforms. Comparative analysis of experimental and predicted three-dimensional structures of AtSHM1-7 proteins indicated differences in regions that surround the entrance to the active site cavity.

7.
Int J Biol Macromol ; 213: 589-601, 2022 Jul 31.
Article in English | MEDLINE | ID: mdl-35660042

ABSTRACT

WRKY transcription factors (TFs) constitute one of the largest families of plant TFs. Based on the organization of domains and motifs, WRKY TFs are divided into three Groups (I-III). The WRKY subgroup IIa includes three representatives in A. thaliana, AtWRKY18, AtWRKY40, and AtWRKY60, that participate in biotic and abiotic stress responses. Here we present crystal structures of the DNA binding domain (DBD) of AtWRKY18 alone and in the complex with a DNA duplex containing the WRKY-recognition sequence, W-box. Subgroup IIa WRKY TFs are known to form homo and heterodimers. Our data suggest that the dimerization interface of the full-length AtWRKY18 involves contacts between the DBD subunits. DNA binding experiments and structural analysis point out novel aspects of DNA recognition by WRKY TFs. In particular, AtWRKY18-DBD preferentially binds an overlapping tandem of W-boxes accompanied by a quasi-W-box motif. The binding of DNA deforms the B-type double helix, which suggests that the DNA fragment must be prone to form a specific structure. This can explain why despite the short W-box consensus, WRKY TFs can precisely control gene expression. Finally, this first experimental structure of a Group II WRKY TF allowed us to compare Group I-III representatives.


Subject(s)
Plant Proteins , Transcription Factors , DNA/genetics , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Domains , Stress, Physiological , Transcription Factors/metabolism
8.
Free Radic Biol Med ; 165: 411-420, 2021 03.
Article in English | MEDLINE | ID: mdl-33581275

ABSTRACT

The reactions of protein oxidation play a significant role in many biological processes, especially in diseases development. Therefore, it is important to understand, how the protein molecule behaves in the presence of oxidants. In the present work, photo-oxidation of phytohormone-binding plant protein (VrPhBP) was investigated using light and 3-carboxybenzophenone (3CB) as a sensitizer (one electron oxidant). The protein interacts with the sensitizer in the ground state forming a weak binding complex leading to the presence of bound and free 3CB in solution. The early events and transient species (such as radicals and radical ions) formed during irradiation were characterised by transient spectroscopy showing the formation of the sulphur radical cation Met>S●+ (stabilized by (S∴N)+)and the tyrosyl radical TyrO● on VrPhBP. Thus the 3CB excited triplet state was quenched by the Met and Tyr residues and mostly by Met (based on the deconvoluted transient absorption spectra).The presence of a Tyr side chain in the vicinity of a Met residue results in intramolecular electron transfer from Tyr to the Met>S●+ radical cation, leading to regeneration of the thioether side chain and formation of TyrO●. The presence of other side chains close to Met, such as Arg or Lys can induce the stabilization of Met>S●+ via the formation of two-centered three-electron bonded species (S∴N)+. The transient species were additionally confirmed by stable product analysis. Based on SDS-PAGE, chromatography and mass spectrometry, the formation of methionine sulphoxide and Met-3CB adduct was identified together with di-Tyr cross links. On the basis of the experimental results the overall mechanism of VrPhBP photo-oxidation, from its early events to the formation of stable products, is described. In addition, a good correlation between the mechanisms of photooxidation of model compounds such as Met derivatives and peptides and those for real biological systems is emphasized.


Subject(s)
Plant Proteins , Sulfides , Carrier Proteins , Cytokinins , Free Radicals , Oxidation-Reduction
9.
Acta Biochim Pol ; 68(1): 29-31, 2021 Jan 24.
Article in English | MEDLINE | ID: mdl-33485289

ABSTRACT

Protein crystallographers are well aware of the trap of crystallizing E. coli proteins instead of the macromolecule of interest if heterologous recombinant protein expression in E. coli was part of the experimental pipeline. Among the well-known culprits are YodA metal-binding lipocalin (25 kDa) and YadF carbonic anhydrase (a tetramer of 25 kDa subunits). We report a novel crystal form of another such culprit, E. coli HPII catalase, which is a tetrameric protein of ~340 kDa molecular weight. HPII is likely to contaminate recombinant protein samples, co-purify, and then co-crystallize with the target proteins, especially if their masses in size exclusion chromatography are ~300-400 kDa. What makes this case more interesting but also parlous, is the fact that HPII can crystallize from very low concentrations, even well below 1 mg/mL.


Subject(s)
Catalase/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Arabidopsis/enzymology , Arabidopsis Proteins/chemistry , Chromatography, Gel/methods , Crystallization , Glutamate Dehydrogenase/chemistry , Molecular Weight , Oxidoreductases Acting on CH-NH Group Donors/chemistry , Protein Structure, Quaternary , Recombinant Proteins/chemistry , X-Ray Diffraction
10.
Front Plant Sci ; 11: 754, 2020.
Article in English | MEDLINE | ID: mdl-32655590

ABSTRACT

Glutamate dehydrogenase (GDH) releases ammonia in a reversible NAD(P)+-dependent oxidative deamination of glutamate that yields 2-oxoglutarate (2OG). In current perception, GDH contributes to Glu homeostasis and plays a significant role at the junction of carbon and nitrogen assimilation pathways. GDHs are members of a superfamily of ELFV (Glu/Leu/Phe/Val) amino acid dehydrogenases and are subdivided into three subclasses, based on coenzyme specificity: NAD+-specific, NAD+/NADP+ dual-specific, and NADP+-specific. We determined in this work that the mitochondrial AtGDH1 isozyme from A. thaliana is NAD+-specific. Altogether, A. thaliana expresses three GDH isozymes (AtGDH1-3) targeted to mitochondria, of which AtGDH2 has an extra EF-hand motif and is stimulated by calcium. Our enzymatic assays of AtGDH1 established that its sensitivity to calcium is negligible. In vivo the AtGDH1-3 enzymes form homo- and heterohexamers of varied composition. We solved the crystal structure of recombinant AtGDH1 in the apo-form and in complex with NAD+ at 2.59 and 2.03 Å resolution, respectively. We demonstrate also that both in the apo form and in 1:1 complex with NAD+, it forms D 3-symmetric homohexamers. A subunit of AtGDH1 consists of domain I, which is involved in hexamer formation and substrate binding, and of domain II which binds coenzyme. Most of the subunits in our crystal structures, including those in NAD+ complex, are in open conformation, with domain II forming a large (albeit variable) angle with domain I. One of the subunits of the AtGDH1-NAD+ hexamer contains a serendipitous 2OG molecule in the active site, causing a dramatic (∼25°) closure of the domains. We provide convincing evidence that the N-terminal peptide preceding domain I is a mitochondrial targeting signal, with a predicted cleavage site for mitochondrial processing peptidase (MPP) at Leu17-Leu18 that is followed by an unexpected potassium coordination site (Ser27, Ile30). We also identified several MPD [(+/-)-2-methyl-2,4-pentanediol] binding sites with conserved sequence. Although AtGDH1 is insensitive to MPD in our assays, the observation of druggable sites opens a potential for non-competitive herbicide design.

11.
Biochem J ; 476(16): 2297-2319, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31371393

ABSTRACT

Inorganic pyrophosphatases (PPases, EC 3.6.1.1), which hydrolyze inorganic pyrophosphate to phosphate in the presence of divalent metal cations, play a key role in maintaining phosphorus homeostasis in cells. DNA coding inorganic pyrophosphatases from Arabidopsis thaliana (AtPPA1) and Medicago truncatula (MtPPA1) were cloned into a bacterial expression vector and the proteins were produced in Escherichia coli cells and crystallized. In terms of their subunit fold, AtPPA1 and MtPPA1 are reminiscent of other members of Family I soluble pyrophosphatases from bacteria and yeast. Like their bacterial orthologs, both plant PPases form hexamers, as confirmed in solution by multi-angle light scattering and size-exclusion chromatography. This is in contrast with the fungal counterparts, which are dimeric. Unexpectedly, the crystallized AtPPA1 and MtPPA1 proteins lack ∼30 amino acid residues at their N-termini, as independently confirmed by chemical sequencing. In vitro, self-cleavage of the recombinant proteins is observed after prolonged storage or during crystallization. The cleaved fragment corresponds to a putative signal peptide of mitochondrial targeting, with a predicted cleavage site at Val31-Ala32. Site-directed mutagenesis shows that mutations of the key active site Asp residues dramatically reduce the cleavage rate, which suggests a moonlighting proteolytic activity. Moreover, the discovery of autoproteolytic cleavage of a mitochondrial targeting peptide would change our perception of this signaling process.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis/enzymology , Inorganic Pyrophosphatase/chemistry , Medicago truncatula/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Catalytic Domain , Crystallography, X-Ray , Inorganic Pyrophosphatase/genetics , Medicago truncatula/genetics , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
12.
Psychiatr Pol ; 46(1): 95-107, 2012.
Article in Polish | MEDLINE | ID: mdl-23214153

ABSTRACT

The first psychotic episode is usually preceded by the decline in functioning as well as the occurrence of symptoms, which due to low intensity or short duration do not fulfil the criteria allowing for the recognition of delusions or hallucinations. Early intervention at this stage may prevent the development of psychosis or its onset. It is thus necessary to implement clearly established criteria, which will allow for the identification of patients with a high risk for developing psychosis. One of the diagnostic tools used to identify this stage is the Comprehensive Assessment of at Risk Mental States (CAARMS) developed by Alison Young et al. in the PACE Clinic in Melbourne. This is a method which seems to be a useful tool in everyday medical practice.


Subject(s)
Mass Screening/statistics & numerical data , Mental Disorders/classification , Mental Disorders/diagnosis , Mental Health , Severity of Illness Index , Female , Humans , Male , Predictive Value of Tests , Psychiatric Status Rating Scales/standards , Psychometrics/statistics & numerical data , Reproducibility of Results , Risk Assessment , Sensitivity and Specificity
13.
Psychiatr Pol ; 45(6): 839-49, 2011.
Article in Polish | MEDLINE | ID: mdl-22335127

ABSTRACT

UNLABELLED: Evidence suggests that facial emotion recognition is disturbed in schizophrenic patients however its nature has not been elucidated. Affect recognition is an important aspect of psychosocial functioning. AIM: In this study we assessed recognition of facial emotional expression in schizophrenic patients and its relationship with selected clinical and neuropsychological variables as well as with social functioning. METHOD: We used Penn Emotional Facial Recognition (ER40) task, Wisconsin Card Sorting Test WCST, Social Functioning Scale. Twenty-three patients who met the DSM-IV criteria for schizophrenia -paranoid type, hospitalised at the Department of Adult Psychiatry University of Medical Sciences in Poznan, Poland were involved in the study. The control group of healthy volunteers matched for gender and age was included. RESULTS: Schizophrenic patients performed worse on emotion recognition test than the control group. The relationship between results of ER-40 and WCST and severity of negative symptoms was found. CONCLUSION: Cognitive dysfunctions and disturbances of facial emotion recognition are closely linked in patients with schizophrenia, however casual relationships and relation to symptomatology remains unclear and further studies are necessary.


Subject(s)
Cognition , Facial Expression , Perceptual Disorders/diagnosis , Perceptual Disorders/etiology , Schizophrenia, Paranoid/complications , Social Perception , Adult , Face , Female , Humans , Male , Photic Stimulation/methods , Schizophrenia, Paranoid/physiopathology , Schizophrenic Psychology , Severity of Illness Index , Social Adjustment , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...