Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 220
Filter
2.
Ren Fail ; 46(1): 2349121, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38916144

ABSTRACT

BACKGROUND: In recent years, the research on symptom management in peritoneal dialysis (PD) patients has shifted from a single symptom to symptom clusters and network analysis. This study collected and evaluated unpleasant symptoms in PD patients and explored groups of symptoms that may affect PD patients with a view to higher symptom management. METHODS: The symptoms of PD patients were measured using the modified Dialysis Symptom Index. The symptom network and node characteristics were assessed by network analysis, and symptom clusters were explored by factor analysis. RESULTS: In this study of 602 PD patients (mean age 47.8 ± 16.8 years, 47.34% male), most had less than 2 years of dialysis experience. Five symptom clusters were obtained from factor analysis, which were body symptom cluster, gastrointestinal symptom cluster, mood symptom cluster, sexual disorder symptom cluster, and skin-sleep symptom cluster. Itching and decreased interest in sex may be sentinel symptoms, and being tired or lack of energy and feeling anxious are core symptoms in PD patients. CONCLUSIONS: This study emphasizes the importance of recognizing symptom clusters in PD patients for better symptom management. Five clusters were identified, with key symptoms including itching, decreased interest in sex, fatigue, and anxiety. Early intervention focused on these symptom clusters in PD patients holds promise for alleviating the burden of symptoms.


Subject(s)
Fatigue , Peritoneal Dialysis , Humans , Male , Female , Peritoneal Dialysis/adverse effects , Middle Aged , Adult , China/epidemiology , Fatigue/etiology , Anxiety/etiology , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/complications , Pruritus/etiology , Aged , Symptom Assessment , Factor Analysis, Statistical , Cross-Sectional Studies , East Asian People
3.
J Hazard Mater ; 473: 134576, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38759405

ABSTRACT

The mycotoxigenic fungus Fusarium verticillioides is a common pathogen of grain and medicine that contaminates the host with fumonisin B1 (FB1) mycotoxin, poses serious threats to human and animal health. Therefore, it is crucial to unravel the regulatory mechanisms of growth, and pathogenicity of F. verticillioides. Mbp1 is a component of the MluI cell cycle box binding factor complex and acts as an APSES-type transcription factor that regulates cell cycle progression. However, no information is available regarding its role in F. verticillioides. In this study, we demonstrate that FvMbp1 interacts with FvSwi6 that acts as the cell cycle transcription factor, to form the heteromeric transcription factor complexes in F. verticillioides. Our results show that ΔFvMbp1 and ΔFvSwi6 both cause a severe reduction of vegetative growth, conidiation, and increase tolerance to diverse environmental stresses. Moreover, ΔFvMbp1 and ΔFvSwi6 dramatically decrease the virulence of the pathogen on the stalk and ear of maize. Transcriptome profiling show that FvMbp1-Swi6 complex co-regulates the expression of genes associated with multiple stress responses. These results indicate the functional importance of the FvMbp1-Swi6 complex in the filamentous fungi F. verticillioides and reveal a potential target for the effective prevention and control of Fusarium diseases.


Subject(s)
Fungal Proteins , Fusarium , Transcription Factors , Zea mays , Fusarium/metabolism , Fusarium/pathogenicity , Fusarium/genetics , Fusarium/growth & development , Virulence , Fungal Proteins/metabolism , Fungal Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Zea mays/microbiology , Stress, Physiological , Gene Expression Regulation, Fungal , Plant Diseases/microbiology
4.
ACS Nano ; 18(20): 12945-12956, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717846

ABSTRACT

P3-layered transition oxide cathodes have garnered considerable attention owing to their high initial capacity, rapid Na+ kinetics, and less energy consumption during the synthesis process. Despite these merits, their practical application is hindered by the substantial capacity degradation resulting from unfavorable structural transformations, Mn dissolution and migration. In this study, we systematically investigated the failure mechanisms of P3 cathodes, encompassing Mn dissolution, migration, and the irreversible P3-O3' phase transition, culminating in severe structural collapse. To address these challenges, we proposed an interfacial spinel local interlocking strategy utilizing P3/spinel intergrowth oxide as a proof-of-concept material. As a result, P3/spinel intergrowth oxide cathodes demonstrated enhanced cycling performance. The effectiveness of suppressing Mn migration and maintaining local structure of interfacial spinel local interlocking strategy was validated through depth-etching X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and in situ synchrotron-based X-ray diffraction. This interfacial spinel local interlocking engineering strategy presents a promising avenue for the development of advanced cathode materials for sodium-ion batteries.

5.
Diabetes Obes Metab ; 26(7): 2774-2786, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38618970

ABSTRACT

AIM: This study assessed the efficacy and safety of co-administering retagliptin and henagliflozin versus individual agents at corresponding doses in patients with type 2 diabetes mellitus who were inadequately controlled with metformin. METHODS: This multicentre, phase 3 trial consisted of a 24-week, randomized, double-blind, active-controlled period. Patients with glycated haemoglobin (HbA1c) levels between 7.5% and 10.5% were randomized to receive once-daily retagliptin 100 mg (R100; n = 155), henagliflozin 5 mg (H5; n = 156), henagliflozin 10 mg (H10; n = 156), co-administered R100/H5 (n = 155), or R100/H10 (n = 156). The primary endpoint was the change in HbA1c from baseline to week 24. RESULTS: Based on the primary estimand, the least squares mean reductions in HbA1c at week 24 were significantly greater in the R100/H5 (-1.51%) and R100/H10 (-1.54%) groups compared with those receiving the corresponding doses of individual agents (-0.98% for R100, -0.86% for H5 and -0.95% for H10, respectively; p < .0001 for all pairwise comparisons). Achievement of HbA1c <7.0% at week 24 was observed in 27.1% of patients in the R100 group, 21.2% in the H5 group, 24.4% in the H10 group, 57.4% in the R100/H5 group and 56.4% in the R100/H10 group. Reductions in fasting plasma glucose and 2-h postprandial glucose were also more pronounced in the co-administration groups compared with the individual agents at corresponding doses. Decreases in body weight and systolic blood pressure were greater in the groups containing henagliflozin than in the R100 group. The incidence rates of adverse events were similar across all treatment groups, with no reported episodes of severe hypoglycaemia. CONCLUSIONS: For patients with type 2 diabetes mellitus inadequately controlled by metformin monotherapy, the co-administration of retagliptin and henagliflozin yielded more effective glycaemic control through 24 weeks compared with the individual agents at their corresponding doses.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Drug Therapy, Combination , Glycated Hemoglobin , Hypoglycemic Agents , Metformin , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Male , Middle Aged , Female , Double-Blind Method , Metformin/administration & dosage , Metformin/therapeutic use , Glycated Hemoglobin/analysis , Glycated Hemoglobin/drug effects , Glycated Hemoglobin/metabolism , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Blood Glucose/drug effects , Blood Glucose/metabolism , Aged , Adult , Treatment Outcome
6.
Mol Plant Pathol ; 25(3): e13442, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38476100

ABSTRACT

The type VI secretion system (T6SS) of many gram-negative bacteria injects toxic effectors into adjacent cells to manipulate host cells during pathogenesis or to kill competing bacteria. However, the identification and function of the T6SS effectors remains only partly known. Pantoea ananatis, a gram-negative bacterium, is commonly found in various plants and natural environments, including water and soil. In the current study, genomic analysis of P. ananatis DZ-12 causing brown stalk rot on maize demonstrated that it carries three T6SS gene clusters, namely, T6SS-1, T6SS-2, and T6SS-3. Interestingly, only T6SS-1 secretion systems are involved in pathogenicity and bacterial competition. The study also investigated the T6SS-1 system in detail and identified an unknown T6SS-1-secreted effector TseG by using the upstream T6SS effector chaperone TecG containing a conserved domain of DUF2169. TseG can directly interact with the chaperone TecG for delivery and with a downstream immunity protein TsiG for protection from its toxicity. TseG, highly conserved in the Pantoea genus, is involved in virulence in maize, potato, and onion. Additionally, P. ananatis uses TseG to target Escherichia coli, gaining a competitive advantage. This study provides the first report on the T6SS-1-secreted effector from P. ananatis, thereby enriching our understanding of the various types and functions of type VI effector proteins.


Subject(s)
Pantoea , Type VI Secretion Systems , Type VI Secretion Systems/metabolism , Pantoea/genetics , Bacterial Secretion Systems/genetics , Virulence/genetics , Anti-Bacterial Agents , Molecular Chaperones , Bacterial Proteins/metabolism
7.
Adv Sci (Weinh) ; 11(15): e2308979, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38345238

ABSTRACT

Ammonia, a vital component in the synthesis of fertilizers, plastics, and explosives, is traditionally produced via the energy-intensive and environmentally detrimental Haber-Bosch process. Given its considerable energy consumption and significant greenhouse gas emissions, there is a growing shift toward electrocatalytic ammonia synthesis as an eco-friendly alternative. However, developing efficient electrocatalysts capable of achieving high selectivity, Faraday efficiency, and yield under ambient conditions remains a significant challenge. This review delves into the decades-long research into electrocatalytic ammonia synthesis, highlighting the evolution of fundamental principles, theoretical descriptors, and reaction mechanisms. An in-depth analysis of the nitrogen reduction reaction (NRR) and nitrate reduction reaction (NitRR) is provided, with a focus on their electrocatalysts. Additionally, the theories behind electrocatalyst design for ammonia synthesis are examined, including the Gibbs free energy approach, Sabatier principle, d-band center theory, and orbital spin states. The review culminates in a comprehensive overview of the current challenges and prospective future directions in electrocatalyst development for NRR and NitRR, paving the way for more sustainable methods of ammonia production.

8.
Plant Biotechnol J ; 22(7): 1800-1811, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38344883

ABSTRACT

The plant rapid alkalinization factor (RALF) peptides function as key regulators in cell growth and immune responses through the receptor kinase FERONIA (FER). In this study, we report that the transcription factor FgPacC binds directly to the promoter of FgRALF gene, which encodes a functional homologue of the plant RALF peptides from the wheat head blight fungus Fusarium graminearum (FgRALF). More importantly, FgPacC promotes fungal infection via host immune suppression by activating the expression of FgRALF. The FgRALF peptide also exhibited typical activities of plant RALF functions, such as inducing plant alkalinization and inhibiting cell growth, including wheat (Triticum aestivum), tomato (Solanum lycopersicum) and Arabidopsis thaliana. We further identified the wheat receptor kinase FERONIA (TaFER), which is capable of restoring the defects of the A. thaliana FER mutant. In addition, we found that FgRALF peptide binds to the extracellular malectin-like domain (ECD) of TaFER (TaFERECD) to suppress the PAMP-triggered immunity (PTI) and cell growth. Overexpression of TaFERECD in A. thaliana confers plant resistance to F. graminearum and protects from FgRALF-induced cell growth inhibition. Collectively, our results demonstrate that the fungal pathogen-secreted RALF mimic suppresses host immunity and inhibits cell growth via plant FER receptor. This establishes a novel pathway for the development of disease-resistant crops in the future without compromising their yield potential.


Subject(s)
Arabidopsis , Fusarium , Plant Immunity , Arabidopsis/immunology , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Plant Diseases/microbiology , Plant Diseases/immunology , Triticum/microbiology , Triticum/genetics , Triticum/immunology , Triticum/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Plant , Phosphotransferases/metabolism , Phosphotransferases/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Solanum lycopersicum/microbiology , Solanum lycopersicum/genetics , Solanum lycopersicum/immunology , Solanum lycopersicum/metabolism , Protein Serine-Threonine Kinases
9.
J Antimicrob Chemother ; 79(4): 820-825, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38366379

ABSTRACT

OBJECTIVES: To describe the pharmacokinetics/pharmacodynamics (PK/PD) of ceftazidime/avibactam in critically ill patients with CNS infections. METHODS: A prospective study of critically ill patients with CNS infections who were treated with ceftazidime/avibactam and the steady-state concentration (Css) of ceftazidime/avibactam in serum and/or CSF was conducted between August 2020 and May 2023. The relationship between PK/PD goal achievement, microbial eradication and the clinical efficacy of ceftazidime/avibactam was evaluated. RESULTS: Seven patients were finally included. The ceftazidime/avibactam target attainment in plasma was optimal for three, quasi-optimal for one and suboptimal for three. In three patients with CSF drug concentrations measured, ceftazidime/avibactam target attainment in CSF was 100% (3/3), which was optimal. The AUCCSF/serum values were 0.59, 0.44 and 0.35 for ceftazidime and 0.57, 0.53 and 0.51 for avibactam. Of the seven patients, 100% (7/7) were treated effectively, 71.4% (5/7) achieved microbiological eradication, 85.7% (6/7) survived and 14.3% (1/7) did not survive. CONCLUSIONS: The limited clinical data suggest that ceftazidime/avibactam is effective in the treatment of CNS infections caused by MDR Gram-negative bacilli (MDR-GNB), can achieve the ideal drug concentration of CSF, and has good blood-brain barrier penetration.


Subject(s)
Ceftazidime , Central Nervous System Infections , Humans , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Prospective Studies , Carbapenems , Critical Illness , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Drug Combinations , Central Nervous System Infections/drug therapy , Microbial Sensitivity Tests
10.
Int Med Case Rep J ; 17: 111-120, 2024.
Article in English | MEDLINE | ID: mdl-38348428

ABSTRACT

Hemodynamic instability in patients with clozapine intoxication can indirectly reflect the serum concentration of clozapine.We have described a case of a 32-year-old pregnant woman who developed life-threatening clozapine toxicity at 28 weeks of gestation. The levels of clozapine and norclozapine in the serum were high. We initiated hemoperfusion(HP) and other detoxification therapies to remove the drug. The patient had severely dilated peripheral blood vessels, which led to cardiac symptoms such as fatal hypotension and uncontrollable tachycardia, resulting in very high cardiac output and elevated Central venous oxygen saturation (ScvO2). Pharmacological intervention significantly improved the hemodynamics.In light of our observations in the ongoing case, we posit that evaluating hemodynamic parameters before and after blood detoxification could serve as a valuable means to gauge effectiveness and provide guidance for treatment.

11.
Int J Biol Macromol ; 261(Pt 2): 129750, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286384

ABSTRACT

Bacillus spp. has been widely used as a biocontrol agent to control plant diseases. However, little is known about mechanisms of the protein MAMP secreted by Bacillus spp. Herein, our study reported a glycoside hydrolase family 30 (GH30) protein, BpXynC, produced by the biocontrol bacteria Bacillus paralicheniformis NMSW12, that can induce cell death in several plant species. The results revealed that the recombinant protein triggers cell death in Nicotiana benthamiana in a BAK1-dependent manner and elicits an early defense response, including ROS burst, activation of MAPK cascades, and upregulation of plant immunity marker genes. BpXynC was also found to be a glucuronoxylanase that exhibits hydrolysis activity on xlyan. Two mutants of BpXynC which lost the glucuronoxylanase activity still retained the elicitor activity. The qRT-PCR results of defense-related genes showed that BpXynC induces plant immunity responses via an SA-mediated pathway. BpXynC and its mutants could induce resistance in N. benthamiana against infection by Sclerotinia sclerotiorum and tobacco mosaic virus (TMV). Furthermore, BpXynC-treated tomato fruits exhibited strong resistance to the infection of Phytophthora capsica. Overall, our study revealed that GH30 protein BpXynC can induce plant immunity response as MAMP, which can be further applied as a biopesticide to control plant diseases.


Subject(s)
Bacillus , Glycoside Hydrolases , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Proteins , Bacillus/metabolism , Plant Immunity , Plant Diseases/microbiology
12.
Biomater Sci ; 12(4): 1004-1015, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38196338

ABSTRACT

Prepubertal male patients with cancer have decreased fertility after treatment, but there are currently no suitable means for fertility rescue. Testicular transplantation seems to be a promising treatment. The short-term insufficiency of blood supply after transplantation is the key problem that needs to be solved. In this research, nitric oxide (NO), a gas and small molecule transmitter with the effect of promoting angiogenesis, acted at the site of testicular transplantation. Herein, poloxamer-407 (P407) and lipid microbubble materials served as transport carriers for NO and helped NO to function at the transplant site. P407 hydrogel loaded with NO microbubbles (PNO) slowly released NO in vitro. The three-dimensional space of the hydrogel provided a stable environment for NO microbubbles, which is conducive to the continuous release of NO. In this study, 25% PNO (w/v) was selected, and the gelling temperature was 19.47 °C. The gelling efficiency was relatively high at body temperature. Rheological experiments showed that PNO, at this concentration, had stable mechanical properties. The results from in vivo experiments demonstrated that testicular grafts in the PNO group exhibited a notably accelerated blood flow recovery compared to the other groups. Additionally, the PNO group displayed a significant improvement in reproductive function recovery. In conclusion, PNO exhibited slow release of NO, and a small amount of NO promoted angiogenesis in testicular grafts and restored reproductive function.


Subject(s)
Hydrogels , Poloxamer , Humans , Male , Hydrogels/pharmacology , Nitric Oxide , Microbubbles , Angiogenesis
13.
Nat Commun ; 15(1): 231, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38182582

ABSTRACT

Bivalent histone modifications, including functionally opposite H3K4me3 and H3K27me3 marks simultaneously on the same nucleosome, control various cellular processes by fine-tuning the gene expression in eukaryotes. However, the role of bivalent histone modifications in fungal virulence remains elusive. By mapping the genome-wide landscape of H3K4me3 and H3K27me3 dynamic modifications in Fusarium graminearum (Fg) during invasion, we identify the infection-related bivalent chromatin-marked genes (BCGs). BCG1 gene, which encodes a secreted Fusarium-specific xylanase containing a G/Q-rich motif, displays the highest increase of bivalent modification during Fg infection. We report that the G/Q-rich motif of BCG1 is a stimulator of its xylanase activity and is essential for the full virulence of Fg. Intriguingly, this G/Q-rich motif is recognized by pattern-recognition receptors to trigger plant immunity. We discover that Fg employs H3K4me3 modification to induce BCG1 expression required for host cell wall degradation. After breaching the cell wall barrier, this active chromatin state is reset to bivalency by co-modifying with H3K27me3, which enables epigenetic silencing of BCG1 to escape from host immune surveillance. Collectively, our study highlights how fungal pathogens deploy bivalent epigenetic modification to achieve temporally-coordinated activation and suppression of a critical fungal gene, thereby facilitating successful infection and host immune evasion.


Subject(s)
Histone Code , Histones , Histones/genetics , Immune Evasion , Protein Processing, Post-Translational , Chromatin
14.
Pharmacol Res Perspect ; 12(1): e01163, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38149723

ABSTRACT

To describe the pharmacokinetics/pharmacodynamics (PK/PD) of a 2 h infusion of ceftazidime-avibactam (CAZ-AVI) in critically ill patients with augmented renal clearance (ARC). A retrospective review of all critically ill patients with ARC who were treated with CAZ-AVI between August 2020 and May 2023 was conducted. Patients whose 12-h creatinine clearance prior to CAZ-AVI treatment and steady-state concentration (Css) of CAZ-AVI were both monitored were enrolled. The free fraction (fCss) of CAZ-AVI was calculated from Css. The joint PK/PD targets of CAZ-AVI were considered optimal when a Css/minimum inhibitory concentration (MIC) ratio for CAZ ≥4 (equivalent to 100% fT > 4 MIC) and a Css/CT ratio of AVI >1 (equivalent to 100% fT > CT 4.0 mg/L) were reached simultaneously, quasioptimal when only one of the two targets was reached, and suboptimal when neither target was reached. The relationship between PK/PD goal achievement, microbial eradication and the clinical efficacy of CAZ-AVI was evaluated. Four patients were included. Only one patient achieved optimal joint PK/PD targets, while the other three reached suboptimal targets. The patient with optimal PK/PD targets achieved microbiological eradication, while the other three patients did not, but all four patients achieved good clinical efficacy. Standard dosages may not enable most critically ill patients with ARC to reach the optimal joint PK/PD targets of CAZ-AVI. Optimal drug dose adjustment of CAZ-AVI in ARC patients requires dynamic drug concentration monitoring.


Subject(s)
Anti-Bacterial Agents , Critical Illness , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Critical Illness/therapy , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use
15.
Physiol Plant ; 175(6): e14087, 2023.
Article in English | MEDLINE | ID: mdl-38148207

ABSTRACT

Rhizoctonia solani and Xanthomonas oryzae pv. oryzae (Xoo) are the two major diseases affecting the quality and quantity of rice production. In the current study, volatile organic compounds (VOCs) of Bacillus spp. were used as green biocontrol agents for plant diseases. In in vitro experiments, Bacillus spp. FZB42, NMTD17, and LLTC93-VOCs displayed strong antimicrobial volatile activity with inhibition rates of 76, 66, and 78% for R. solani and 78, 81, and 76% for Xoo, respectively, compared to control. The synthetic VOCs, namely Pentadecane (PDC), Benzaldehyde (BDH), 1,2-Benz isothiazol-3(2H)-one (1,2-BIT), and mixture (MIX) of VOCs showed high volatile activity with inhibition rates of 86, 86, 89, and 92% against R. solani and 81, 81, 82, and 86%, respectively, against Xoo as compared to control. In addition, the scanning and transmission electron microscopes (SEM and TEM) analyses were performed to examine the effect of Bacillus and synthetic VOC treatments on R. solani and Xoo morphology. The analysis revealed the deformed and irregularized morphology of R. solani mycelia and Xoo cells after VOC treatments. The microscopic analysis showed that the rapid inhibition was due to severe oxidative productions inside the R. solani mycelia and Xoo cells. By using molecular docking, it was determined that the synthetic VOCs entered the active binding site of trehalase and NADH dehydrogenase proteins, causing R. solani and Xoo cells to die prematurely and an accumulation of ROS. In the greenhouse experiment, FZB42, NMTD17, and LLTC93-VOCs significantly reduced the lesions of R. solani 8, 7, and 6 cm, and Xoo 7, 6, and 6 cm, respectively, then control. The synthetic VOCs demonstrated that the PDC, BDH, 1,2-BIT, and MIX-VOCs significantly reduced R. solani lesions on leaves 6, 6, 6, and 5 cm and Xoo 6, 5, 5, and 4 cm, respectively, as compared to control. Furthermore, plant defence-related genes and antioxidant enzymes were upregulated in rice plants. These findings provide novel mechanisms by which Bacillus antimicrobial VOCs control plant diseases.


Subject(s)
Anti-Infective Agents , Bacillus , Oryza , Volatile Organic Compounds , Xanthomonas , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/metabolism , Molecular Docking Simulation , Plant Diseases/genetics , Oryza/metabolism , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology
16.
J Inflamm Res ; 16: 4725-4732, 2023.
Article in English | MEDLINE | ID: mdl-37872958

ABSTRACT

Purpose: Immune dysfunction plays a pivotal role in sepsis pathogenesis. Previous studies have revealed the crucial role of T cells and human leukocyte antigen-DR (HLA-DR) in sepsis. However, the function of natural killer (NK) cells remains unclear. This study aimed to investigate whether NK cells are associated with sepsis prognosis. In addition, we aimed to explore the interrelation and influence between NK and other immunological features in patients with sepsis. Patients and Methods: This retrospective, observational study included patients with sepsis from two hospitals in mainland China. The clinical characteristics and immune results during the early phase were collected. Patients were classified according to the level of immune cells to analyze the relationship between immunological features and 28-day mortality. Results: A total of 984 patients were included in this study. Non-survivors were older and had lower levels of lymphocytes, monocytes, NK cells, HLA-DR, and T cells. Patients were classified into eight groups according to their levels of NK cells, HLA-DR, and T cells. Only patients with decreased NK and T cell counts showed a significant increase in 28-day mortality. An increase in CD8+ T cells was correlated with the alleviation of 28-day mortality only among patients with high NK cell levels. Conclusion: This study provides novel insights into the association between NK cells and 28-day mortality as well as the interrelation between NK cells and other immune cells in sepsis. The relationship between CD8+ T cells and 28-day mortality in sepsis is dependent on NK cell count.

17.
Int J Antimicrob Agents ; 62(6): 107006, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37839718

ABSTRACT

OBJECTIVES: Hepatic impairment increases the risk of drug overexposure in septic patients. However, there is a lack of effective indicators to predict overexposure risk. The indocyanine green (ICG) clearance test is a helpful method for dynamically assessing hepatic function and perfusion. This study aimed to investigate whether the ICG test could serve as a potential predictor of linezolid trough concentration (Cmin) and to compare its efficacy with that of conventional liver function markers. METHODS: A total of 35 consecutive septic patients treated with linezolid were grouped into either linezolid Cmin of ≤7 µg/mL or >7 µg/mL. Correlations between linezolid Cmin and ICG-PDR (plasma disappearance rate), ICG-R15 (retention ratio after 15 min) and other traditional indicators were analysed by Spearman's rank test. A multivariable regression model was employed to discern factors contributing independently to overexposure. RESULTS: Statistical differences were observed between groups for APACHE II score (P = 0.031), SOFA score (P = 0.018), creatinine clearance (CLCr) (P = 0.003), thrombocytes (P = 0.039), lactate (P = 0.003), ICG-PDR (P < 0.001) and ICG-R15 (P < 0.001). Moreover, linezolid Cmin was correlated with ICG-PDR (ρ = -0.628, P < 0.001), ICG-R15 (ρ = 0.676, P < 0.001) and CLCr (ρ = -0.503, P = 0.002). ICG-PDR was identified as an independent predictor of linezolid overexposure, with an optimal cut-off value of 17.70%/min (93.3% sensitivity, 85.0% specificity; P < 0.001). CONCLUSIONS: This pilot clinical trial represents the first investigation of potential of the ICG test to predict linezolid overexposure in septic patients.


Subject(s)
Indocyanine Green , Sepsis , Humans , Linezolid , Liver Function Tests , Sepsis/diagnosis , Sepsis/drug therapy
18.
Arch Microbiol ; 205(11): 358, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37878074

ABSTRACT

Volatile organic compounds (VOCs), produced by a variety of microbial species and used as biological agents, have been demonstrated to play a significant role in controlling phytopathogens. In continuation of our previous studies, we aim to elucidate the underlying mechanisms and pathways involved in interactions between pathogens and microbial VOCs. In the current study, we tested how VOCs produced by Bacillus velezensis FZB42 affect the growth of Ralstonia solanacearum TBBS1 in vitro.Query The result showed that the colony growth of R. solanacearum was reduced with an inhibition rate of 0.83 ± 0.043 as compared to the control 1.7 ± 0.076, respectively. The number of viable cells of R. solanacearum was significantly decreased to 7.68 CFU/mL as compared to the control (9.02 CFU/mL). In addition, transcriptomic analysis of R. solanacearum in response to VOCs produced by FZB42 was performed to better understand the effect of VOCs on R. solanacearum. The transcriptional response of R. solanacearum to FZB42-VOCs was determined using an Illumina RNA-seq approach. The results revealed significant changes in the expression of 2094 R. solanacearum genes, including 593 upregulated and 1501 downregulated genes. To validate the RNA-seq results, the expression of 10 genes was quantified using RT-qPCR. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to functionally annotate differentially expressed genes. Significant changes were observed in genes directly or indirectly related to virulence, including those related to bacterial invasion, motility, chemotaxis, and secretion systems. Overall, RNA-seq profiling provides new insights into the possible fundamental molecular mechanisms that are responsible for the reduction in growth and virulence of R. solanacearum upon application of FZB42-VOC.


Subject(s)
Ralstonia solanacearum , Volatile Organic Compounds , Ralstonia solanacearum/genetics , Transcriptome , Gene Expression Profiling , Anti-Bacterial Agents , Volatile Organic Compounds/pharmacology
20.
J Int Soc Sports Nutr ; 20(1): 2258850, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37735799

ABSTRACT

BACKGROUND: There is epidemiological evidence which suggests an association between 25-hydroxyvitamin D [25(OH)D] levels and bone and muscle function; however, it is unclear whether vitamin D supplementation has an added benefit beyond bone health. Here, we investigated the effects of vitamin D3 supplementation (1 month) on physical performance in Chinese university students in winter. METHODS: One hundred and seventeen eligible subjects with 25(OH)D (19.2 ± 7.8 ng/mL) were randomly assigned to either vitamin D3 supplement (N = 56; 1000 IU/day) or the control (N = 61) group for 1 month. Pre- and post-measurements included: 1) serum levels of 25(OH)D; 2) musculoskeletal and pulmonary function [vertical jump height (VJH) and right handgrip strength (RHS), forced vital capacity (FVC), and forced expiratory volume at 1s (FEV1)]; 3) bone turnover markers [parathyroid hormone (PTH), n-terminal osteocalcin (N-MID), and calcium]; 4) hemoglobin-related parameters [hemoglobin (Hb), hematocrit (HCT), red blood cells (RBC), and red cell distribution width (RDW)]; 5) lipid parameters [total triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C)]; 6) Fatigue-related indicators [serum creatine kinase (CK), lactate dehydrogenase (LDH), and total testosterone (T)]. In addition, aerobic capacity was assessed by measuring maximal oxygen uptake (VO2max) at baseline. RESULTS: During wintertime, supplementation with 1000 IU/d of vitamin D3 significantly increased serum 25(OH)D levels (from 18.85 ± 7.04 to 26.98 ± 5.88 ng/mL, p < 0.05), accompanied by a decrease of PTH (p < 0.05). However, vitamin D3 supplementation did not significantly impact the physical performance, serum lipid parameters, and bone turnover markers of students. Furthermore, 25(OH)D was found to be positively correlated with VJH and negatively correlated with PTH and TC at the beginning and end of the study (p < 0.05). In addition, the multiple linear regression analysis showed that 25(OH)D combined with athletic, gender, height, weight, Hb, and FVC could account for 84.0% of the VO2max value. CONCLUSIONS: The study demonstrated that one-month of 1000 IU/d of vitamin D3 supplementation during the winter had beneficial effects on 25(OH)D status and PTH. However, vitamin D3 intervention was not sufficient to improve physical performance. Furthermore, 25(OH)D levels combined with athletic, Hb and FVC could be a predictor of VO2max.


Subject(s)
Cholecalciferol , Hand Strength , Humans , Universities , Vitamin D , Physical Functional Performance , Cholesterol, HDL
SELECTION OF CITATIONS
SEARCH DETAIL
...