Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Pharmacol ; 103: 104276, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37717721

ABSTRACT

Evidence of impact of ambient oxidant pollution on cardiometabolic responses remains limited. We aimed to examine associations of oxidant pollutants with cardiometabolic responses, and effect modification by ceramides. During 2019-2020, 152 healthy adults were visited 4 times in Beijing, China, and indicators of ceramides, glucose homeostasis, and vascular function were measured. We found significant increases in ceramides of 13.9% (p = 0.020) to 110.1% (p = 0.005) associated with an interquartile increase in oxidant pollutants at prior 1-7 days. Exposure to oxidant pollutants was also related to elevations in insulin and reductions in adiponectin, and elevations in systolic and diastolic blood pressure. Further, stratified analyses revealed larger changes in oxidant pollutant related cardiometabolic responses among participants with higher ceramide levels compared to those with lower levels. Our findings suggested cardiometabolic effects associated with exposure to oxidant pollutants, which may be modified by ceramide levels.

2.
Geohealth ; 7(8): e2023GH000820, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37534336

ABSTRACT

Carbon loading in airway cells has shown to worsen function of antimicrobial peptides, permitting increased survival of pathogens in the respiratory tract; however, data on the impacts of carbon particles on childhood acute respiratory infection (ARI) is limited. We assembled daily health data on outpatient visits for ARI (bronchitis, pneumonia, and total upper respiratory infection [TURI]) in children aged 0-14 years between 2015 and 2019 in Beijing, China. Anthropogenic carbons, including black carbon (BC) and its emission sources, and wood smoke particles (delta carbon, ultra-violet absorbing particulate matter, and brown carbon) were continuously monitored. Using a time-stratified case-crossover approach, conditional logistic regression was performed to derive risk estimates for each outcome. A total of 856,899 children were included, and a wide range of daily carbon particle concentrations was observed, with large variations for BC (0.36-20.44) and delta carbon (0.48-57.66 µg/m3). Exposure to these particles were independently associated with ARI, with nearly linear exposure-response relationships. Interquartile range increases in concentrations of BC and delta carbon over prior 0-8 days, we observed elevation of the odd ratio of bronchitis by 1.201 (95% confidence interval, 1.180, 1.221) and 1.048 (95% CI, 1.039, 1.057), respectively. Stronger association was observed for BC from traffic sources, which increased the odd ratio of bronchitis by 1.298 (95% CI, 1.273, 1.324). Carbon particles were also associated with elevated risks of pneumonia and TURI, and subgroup analyses indicated greater risks among children older than 6 years. Our findings suggested that anthropogenic carbons in metropolitan areas may pose a significant threat to clinical manifestations of respiratory infections in vulnerable populations.

3.
Sci Total Environ ; 851(Pt 1): 158196, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-35995158

ABSTRACT

Climate variability driven by El Niño-Southern Oscillation (ENSO) is a significant public health concern in parallel with global population aging; however, its role in healthy aging is less studied. We examined the longitudinal impacts of ENSO exposure on excess mortality and related medical costs in the elderly from 23 provinces of China. A total of 27,533 non-accidental all-cause deaths were recorded in 30,763 participants during 1998-2018. We found that both low and high levels of ENSO metrics over lags of 0-12 months were associated with increased mortality risks. Specifically, comparing the 10th percentile (-1.8) and 90th percentile (2.0) multivariate El Niño index (MEI) levels to the reference level with the minimum effect of MEI exposure, the risk of mortality was 1.87 (95 % confidence interval [CI], 1.75, 2.00) and 4.89 (95 % CI, 4.36, 5.49), respectively. ENSO exposure was also positively related to medical costs. Further, the associations were stronger among drinkers, lower-income participants, and those with higher blood pressure and heart rate measured at the most recent follow-ups. Our results suggested that ENSO exposure was capable of heightening mortality risks and medical burden among older elderly adults, highlighting that climate variability driven by ENSO could be a crucial determinant of healthy aging.


Subject(s)
El Nino-Southern Oscillation , Aged , China/epidemiology , Humans
4.
Sci Total Environ ; 827: 154210, 2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35240186

ABSTRACT

AIMS: Evidence on the impacts of traffic-related air pollution (TRAP) on ST-segment elevation myocardial infarction (STEMI) events is limited. We aimed to assess the acute effects of TRAP exposure on the clinical onset of STEMI and related cardiac impairments. METHODS AND RESULTS: We recruited patients who were admitted for STEMI and underwent primary percutaneous coronary intervention at Peking University Third Hospital between 2014 and 2020. Indicators relevant to cardiac impairments were measured. Concomitantly, hourly concentrations of traffic pollutants were monitored throughout the study period, including fine particulate matter, black carbon (BC), particles in size ranges of 5-560 nm, oxides of nitrogen (NOX), nitrogen dioxide, and carbon monoxide. The mean (SD) age of participants was 62.4 (12.5) years. Daily average (range) concentrations of ambient BC and NOX were 3.9 (0.1-25.0) µg/m3 and 90.8 (16.6-371.7) µg/m3. Significant increases in STEMI risks of 5.9% (95% CI: 0.1, 12.0) to 21.9% (95% CI: 6.0, 40.2) were associated with interquartile range increases in exposure to TRAP within a few hours. These changes were accompanied by significant elevations in cardiac troponin T levels of 6.9% (95% CI: 0.2, 14.1) to 41.7% (95% CI: 21.2, 65.6), as well as reductions in left ventricular ejection fraction of 1.5% (95% CI: 0.1, 2.9) to 3.7% (95% CI: 0.8, 6.4). Furthermore, the associations were attenuated in participants living in areas with higher residential greenness levels. CONCLUSIONS: Our findings extend current understanding that short-term exposure to higher levels of traffic pollution was associated with increased STEMI risks and exacerbated cardiac impairments, and provide evidence on traffic pollution control priority for protecting vulnerable populations who are at greater risks of cardiovascular events.


Subject(s)
Air Pollutants , Air Pollution , ST Elevation Myocardial Infarction , Traffic-Related Pollution , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/analysis , Environmental Exposure/analysis , Humans , Middle Aged , Particulate Matter/analysis , ST Elevation Myocardial Infarction/epidemiology , Stroke Volume , Traffic-Related Pollution/adverse effects , Ventricular Function, Left
SELECTION OF CITATIONS
SEARCH DETAIL
...