Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 114
1.
Kidney Int ; 105(1): 165-176, 2024 Jan.
Article En | MEDLINE | ID: mdl-37774924

Podocyte injury plays a key role in pathogenesis of many kidney diseases with increased podocyte foot process width (FPW), an important measure of podocyte injury. Unfortunately, there is no consensus on the best way to estimate FPW and unbiased stereology, the current gold standard, is time consuming and not widely available. To address this, we developed an automated FPW estimation technique using deep learning. A U-Net architecture variant model was trained to semantically segment the podocyte-glomerular basement membrane interface and filtration slits. Additionally, we employed a post-processing computer vision approach to accurately estimate FPW. A custom segmentation utility was also created to manually classify these structures on digital electron microscopy (EM) images and to prepare a training dataset. The model was applied to EM images of kidney biopsies from 56 patients with Fabry disease, 15 with type 2 diabetes, 10 with minimal change disease, and 17 normal individuals. The results were compared with unbiased stereology measurements performed by expert technicians unaware of the clinical information. FPW measured by deep learning and by the expert technicians were highly correlated and not statistically different in any of the studied groups. A Bland-Altman plot confirmed interchangeability of the methods. FPW measurement time per biopsy was substantially reduced by deep learning. Thus, we have developed a novel validated deep learning model for FPW measurement on EM images. The model is accessible through a cloud-based application making calculation of this important biomarker more widely accessible for research and clinical applications.


Deep Learning , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Humans , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/pathology , Glomerular Basement Membrane/pathology , Biopsy
2.
Hum Mol Genet ; 31(13): 2121-2136, 2022 07 07.
Article En | MEDLINE | ID: mdl-35043953

Renal ciliopathies are the leading cause of inherited kidney failure. In autosomal dominant polycystic kidney disease (ADPKD), mutations in the ciliary gene PKD1 lead to the induction of CCL2, which promotes macrophage infiltration in the kidney. Whether or not mutations in genes involved in other renal ciliopathies also lead to immune cells recruitment is controversial. Through the parallel analysis of patients' derived material and murine models, we investigated the inflammatory components of nephronophthisis (NPH), a rare renal ciliopathy affecting children and adults. Our results show that NPH mutations lead to kidney infiltration by neutrophils, macrophages and T cells. Contrary to ADPKD, this immune cell recruitment does not rely on the induction of CCL2 in mutated cells, which is dispensable for disease progression. Through an unbiased approach, we identified a set of inflammatory cytokines that are upregulated precociously and independently of CCL2 in murine models of NPH. The majority of these transcripts is also upregulated in NPH patient renal cells at a level exceeding those found in common non-immune chronic kidney diseases. This study reveals that inflammation is a central aspect in NPH and delineates a specific set of inflammatory mediators that likely regulates immune cell recruitment in response to NPH genes mutations.


Ciliopathies , Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Adult , Animals , Child , Ciliopathies/genetics , Fibrosis , Humans , Kidney , Mice , Polycystic Kidney, Autosomal Dominant/genetics , TRPP Cation Channels/genetics
3.
Pediatr Nephrol ; 36(8): 2361-2369, 2021 08.
Article En | MEDLINE | ID: mdl-33580824

BACKGROUND: Co-occurrence of polycystic kidney disease and hyperinsulinemic hypoglycemia has been reported in children in a few families associated with a variant in the promotor of the PMM2 gene, at position -167 upstream of the coding sequence. PMM2 encodes phosphomannomutase 2, a key enzyme in N-glycosylation. While biallelic coding PMM2 mutations are involved in congenital disorder of glycosylation CDG1A, that particular variant in the promoter of the gene, either in the homozygous state or associated with a mutation in the coding exons of the gene, is thought to restrict the N-glycosylation defect to the kidney and the pancreas. METHODS: Targeted exome sequencing of a panel of genes involved in monogenic kidney diseases. RESULTS: We identified a PMM2 variant at position -167 associated with a pathogenic PMM2 variant in the coding exons in 3 families, comprising 6 cases affected with a cystic kidney disease. The spectrum of phenotypes was very broad, from extremely enlarged fetal cystic kidneys in the context of a COACH-like syndrome, to isolated cystic kidney disease with small kidneys, slowly progressing toward kidney failure in adulthood. Hypoglycemia was reported only in one case. CONCLUSION: These data show that the PMM2 promotor variation, in trans of a PMM2 coding mutation, is associated with a wide spectrum of kidney phenotypes, and is not always associated with extra-renal symptoms. When present, extra-renal defects may include COACH-like syndrome. These data prompt screening of PMM2 in unresolved cases of fetal hyperechogenic/cystic kidneys as well as in cystic kidney disease in children and adults. Graphical Abstract.


Polycystic Kidney Diseases , Congenital Hyperinsulinism , Humans , Mutation , Phenotype , Phosphotransferases (Phosphomutases) , Promoter Regions, Genetic , Syndrome
4.
Kidney Int ; 99(2): 405-409, 2021 02.
Article En | MEDLINE | ID: mdl-33129895

DNAJB11 (DnaJ Heat Shock Protein Family (Hsp40) Member B11) heterozygous loss of function variations have been reported in autosomal dominant cystic kidney disease with extensive fibrosis, associated with maturation and trafficking defect involving both the autosomal dominant polycystic kidney disease protein polycystin-1 and the autosomal dominant tubulointerstitial kidney disease protein uromodulin. Here we show that biallelic pathogenic variations in DNAJB11 lead to a severe fetal disease including enlarged cystic kidneys, dilation and proliferation of pancreatic duct cells, and liver ductal plate malformation, an association known as Ivemark II syndrome. Cysts of the kidney were developed exclusively from uromodulin negative tubular segments. In addition, tubular cells from the affected kidneys had elongated primary cilia, a finding previously reported in ciliopathies. Thus, our data show that the recessive disease associated with DNAJB11 variations is a ciliopathy rather than a disease of the autosomal dominant tubulointerstitial kidney disease spectrum, and prompt screening of DNAJB11 in fetal hyperechogenic/cystic kidneys.


Abnormalities, Multiple , Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , HSP40 Heat-Shock Proteins , Humans , Kidney/abnormalities , Kidney/diagnostic imaging , Liver/abnormalities , Pancreas/abnormalities , Polycystic Kidney, Autosomal Dominant/complications , Polycystic Kidney, Autosomal Dominant/genetics
5.
Cell Rep ; 33(4): 108304, 2020 10 27.
Article En | MEDLINE | ID: mdl-33113370

The architecture of renal glomeruli is acquired through intricate and still poorly understood developmental steps. In our study we identify a crucial glomerular morphogenetic event in nephrogenesis that drives the remodeling/separation of the prospective vascular pole (the future entrance of the glomerular arterioles) and the urinary pole (the tubular outflow). We demonstrate that this remodeling is genetically programmed. In fact, in mouse and human, the absence of HNF1B impairs the remodeling/separation of the two poles, leading to trapping and constriction of the tubular outflow inside the glomerulus. This aberration gives rise to obstructive glomerular dilations upon the initiation of primary urine production. In this context, we show that pharmacological decrease of glomerular filtration significantly contains cystic expansion. From a developmental point of view, our study discloses a crucial event on glomerular patterning affecting the "inside-outside" fate of the epithelia in the renal glomerulus.


Kidney Diseases/congenital , Kidney Glomerulus/embryology , Humans , Kidney Glomerulus/pathology
6.
JCI Insight ; 5(9)2020 05 07.
Article En | MEDLINE | ID: mdl-32376805

The loss of functional nephrons after kidney injury triggers the compensatory growth of the remaining ones to allow functional adaptation. However, in some cases, these compensatory events activate signaling pathways that lead to pathological alterations and chronic kidney disease. Little is known about the identity of these pathways and how they lead to the development of renal lesions. Here, we combined mouse strains that differently react to nephron reduction with molecular and temporal genome-wide transcriptome studies to elucidate the molecular mechanisms involved in these events. We demonstrated that nephron reduction led to 2 waves of cell proliferation: the first one occurred during the compensatory growth regardless of the genetic background, whereas the second one occurred, after a quiescent phase, exclusively in the sensitive strain and accompanied the development of renal lesions. Similarly, clustering by coinertia analysis revealed the existence of 2 waves of gene expression. Interestingly, we identified type I interferon (IFN) response as an early (first-wave) and specific signature of the sensitive (FVB/N) mice. Activation of type I IFN response was associated with G1/S cell cycle arrest, which correlated with p21 nuclear translocation. Remarkably, the transient induction of type I IFN response by poly(I:C) injections during the compensatory growth resulted in renal lesions in otherwise-resistant C57BL6 mice. Collectively, these results suggest that the early molecular and cellular events occurring after nephron reduction determine the risk of developing late renal lesions and point to type I IFN response as a crucial event of the deterioration process.


Kidney , Nephrons , Renal Insufficiency, Chronic , Signal Transduction , Animals , Cell Proliferation , Disease Progression , Disease Susceptibility , Female , G1 Phase Cell Cycle Checkpoints , Interferon Type I/metabolism , Kidney/metabolism , Kidney/pathology , Mice , Mice, Inbred C57BL , Nephrons/metabolism , Nephrons/pathology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology
7.
J Am Soc Nephrol ; 31(4): 865-875, 2020 04.
Article En | MEDLINE | ID: mdl-32127409

BACKGROUND: In males with classic Fabry disease, the processes leading to the frequent outcome of ESKD are poorly understood. Defects in the gene encoding α-galactosidase A lead to accumulation of globotriaosylceramide (GL3) in various cell types. In the glomerular podocytes, accumulation of GL3 progresses with age. Of concern, podocytes are relatively resistant to enzyme replacement therapy and are poorly replicating, with little ability to compensate for cell loss. METHODS: In this study of 55 males (mean age 27 years) with classic Fabry disease genotype and/or phenotype, we performed unbiased quantitative morphometric electron microscopic studies of biopsied kidney samples from patients and seven living transplant donors (to serve as controls). We extracted clinical information from medical records and clinical trial databases. RESULTS: Podocyte GL3 volume fraction (proportion of podocyte cytoplasm occupied by GL3) increased with age up to about age 27, suggesting that increasing podocyte GL3 volume fraction beyond a threshold may compromise survival of these cells. GL3 accumulation was associated with podocyte injury and loss, as evidenced by increased foot process width (a generally accepted structural marker of podocyte stress and injury) and with decreased podocyte number density per glomerular volume. Worsening podocyte structural parameters (increasing podocyte GL3 volume fraction and foot process width) was also associated with increasing urinary protein excretion-a strong prognosticator of adverse renal outcomes in Fabry disease-as well as with decreasing GFR. CONCLUSIONS: Given the known association between podocyte loss and irreversible FSGS and global glomerulosclerosis, this study points to an important role for podocyte injury and loss in the progression of Fabry nephropathy and indicates a need for therapeutic intervention before critical podocyte loss occurs.


Fabry Disease/metabolism , Fabry Disease/pathology , Podocytes/metabolism , Podocytes/pathology , Trihexosylceramides/metabolism , Adolescent , Adult , Age Factors , Case-Control Studies , Child , Child, Preschool , Glomerular Filtration Rate , Humans , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Male , Middle Aged , Young Adult
8.
Pediatr Nephrol ; 35(6): 1125-1128, 2020 06.
Article En | MEDLINE | ID: mdl-32198635

BACKGROUND: Bi-allelic loss of function variations in genes encoding proteins of the renin-angiotensin system (AGT, ACE, REN, AGTR1) are associated with autosomal recessive renal tubular dysgenesis, a severe disease characterized by the absence of differentiated proximal tubules leading to fetal anuria and neonatal end-stage renal disease. CASE-DIAGNOSIS/TREATMENT: We identified bi-allelic loss of function mutations in ACE, the gene encoding angiotensin-converting enzyme, in 3 unrelated cases displaying progressive chronic renal failure, whose DNAs had been sent for suspicion of juvenile hyperuricemic nephropathy, nephronophthisis, and cystic renal disease, respectively. In all cases, patients were affected with anemia whose severity was unexpected regarding the level of renal failure and with important polyuro-polydipsia. CONCLUSIONS: Bi-allelic loss of function mutation of ACE can have atypical and sometimes late presentation with chronic renal failure, anemia (out of proportion with the level of renal failure), and polyuro-polydipsia. These data illustrate the usefulness of next generation sequencing and "agnostic" approaches to elucidate cases with chronic kidney disease of unknown etiology and to broaden the spectrum of phenotypes of monogenic renal diseases. It also raises the question of genetic modifiers involved in the variation of the phenotypes associated with these mutations.


Kidney Tubules, Proximal/abnormalities , Renin-Angiotensin System/genetics , Urogenital Abnormalities/diagnosis , Adolescent , Child, Preschool , Female , Humans , Infant, Newborn , Male , Mutation , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/genetics , Urogenital Abnormalities/genetics
9.
Kidney Int ; 96(2): 350-362, 2019 08.
Article En | MEDLINE | ID: mdl-30928021

Inflammation is involved in the pathogenesis of many disorders. However, the underlying mechanisms are often unknown. Here, we test whether cystinosin, the protein involved in cystinosis, is a critical regulator of galectin-3, a member of the ß-galactosidase binding protein family, during inflammation. Cystinosis is a lysosomal storage disorder and, despite ubiquitous expression of cystinosin, the kidney is the primary organ impacted by the disease. Cystinosin was found to enhance lysosomal localization and degradation of galectin-3. In Ctns-/- mice, a mouse model of cystinosis, galectin-3 is overexpressed in the kidney. The absence of galectin-3 in cystinotic mice ameliorates pathologic renal function and structure and decreases macrophage/monocyte infiltration in the kidney of the Ctns-/-Gal3-/- mice compared to Ctns-/- mice. These data strongly suggest that galectin-3 mediates inflammation involved in kidney disease progression in cystinosis. Furthermore, galectin-3 was found to interact with the pro-inflammatory cytokine Monocyte Chemoattractant Protein-1, which stimulates the recruitment of monocytes/macrophages, and proved to be significantly increased in the serum of Ctns-/- mice and also patients with cystinosis. Thus, our findings highlight a new role for cystinosin and galectin-3 interaction in inflammation and provide an additional mechanistic explanation for the kidney disease of cystinosis. This may lead to the identification of new drug targets to delay cystinosis progression.


Amino Acid Transport Systems, Neutral/metabolism , Cystinosis/complications , Fanconi Syndrome/immunology , Galectin 3/metabolism , Inflammation/immunology , Amino Acid Transport Systems, Neutral/genetics , Animals , Chemokine CCL2/immunology , Chemokine CCL2/metabolism , Cystine/metabolism , Cystinosis/immunology , Cystinosis/metabolism , Cystinosis/pathology , Disease Models, Animal , Disease Progression , Fanconi Syndrome/metabolism , Fanconi Syndrome/pathology , Female , Galectin 3/genetics , Humans , Inflammation/metabolism , Inflammation/pathology , Kidney Tubules, Proximal/immunology , Kidney Tubules, Proximal/pathology , Lysosomes/metabolism , Macrophages/immunology , Male , Mice , Mice, Knockout , Monocytes/immunology , Proteolysis
12.
Eur J Med Genet ; 62(4): 254-258, 2019 Apr.
Article En | MEDLINE | ID: mdl-30071301

Renal tubular dysgenesis (RTD) is a developmental abnormality of the nephron characterized by fetal anuria, oligohydramnios, and severe postnatal hypotension. Genetic forms have an autosomal recessive inheritance and are caused by mutations in genes encoding key components of the renin-angiotensin pathway. We report three patients from two unrelated families with RTD due to pathogenic variants of the angiotensin-converting enzyme (ACE) gene, in whom RTD was associated with microcolon. We also detail key variations of the renin-angiotensin system in one of these infants. The severe intestinal developmental abnormality culminating in microcolon and early terminal ileum perforation/necrotizing enterocolitis is a novel finding not previously associated with RTD, which points to a role of the renin-angiotensin system in gut development.


Abnormalities, Multiple/genetics , Ileum/abnormalities , Kidney Tubules/abnormalities , Peptidyl-Dipeptidase A/genetics , Phenotype , Abnormalities, Multiple/pathology , Female , Humans , Infant, Newborn , Male
14.
EMBO J ; 37(15)2018 08 01.
Article En | MEDLINE | ID: mdl-29925518

Polycystic kidney disease (PKD) and other renal ciliopathies are characterized by cysts, inflammation, and fibrosis. Cilia function as signaling centers, but a molecular link to inflammation in the kidney has not been established. Here, we show that cilia in renal epithelia activate chemokine signaling to recruit inflammatory cells. We identify a complex of the ciliary kinase LKB1 and several ciliopathy-related proteins including NPHP1 and PKD1. At homeostasis, this ciliary module suppresses expression of the chemokine CCL2 in tubular epithelial cells. Deletion of LKB1 or PKD1 in mouse renal tubules elevates CCL2 expression in a cell-autonomous manner and results in peritubular accumulation of CCR2+ mononuclear phagocytes, promoting a ciliopathy phenotype. Our findings establish an epithelial organelle, the cilium, as a gatekeeper of tissue immune cell numbers. This represents an unexpected disease mechanism for renal ciliopathies and establishes a new model for how epithelial cells regulate immune cells to affect tissue homeostasis.


Chemokine CCL2/metabolism , Cilia/pathology , Kidney Diseases, Cystic/congenital , Polycystic Kidney, Autosomal Dominant/pathology , Protein Kinase C/genetics , Protein Serine-Threonine Kinases/genetics , AMP-Activated Protein Kinases , Adaptor Proteins, Signal Transducing , Animals , Carrier Proteins/metabolism , Cell Line , Cytoskeletal Proteins , Dogs , Epithelial Cells/metabolism , Female , HEK293 Cells , Humans , Kidney Diseases, Cystic/pathology , Kidney Tubules/cytology , Kidney Tubules/pathology , Macrophages/metabolism , Madin Darby Canine Kidney Cells , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phagocytosis/physiology , Polycystic Kidney, Autosomal Dominant/genetics , Protein Kinase C/metabolism , Protein Serine-Threonine Kinases/metabolism , Zebrafish
15.
PLoS Genet ; 14(5): e1007386, 2018 05.
Article En | MEDLINE | ID: mdl-29768408

Recent evidence suggests that the presence of more than one pathogenic mutation in a single patient is more common than previously anticipated. One of the challenges hereby is to dissect the contribution of each gene mutation, for which animal models such as Drosophila can provide a valuable aid. Here, we identified three families with mutations in ADD3, encoding for adducin-γ, with intellectual disability, microcephaly, cataracts and skeletal defects. In one of the families with additional cardiomyopathy and steroid-resistant nephrotic syndrome (SRNS), we found a homozygous variant in KAT2B, encoding the lysine acetyltransferase 2B, with impact on KAT2B protein levels in patient fibroblasts, suggesting that this second mutation might contribute to the increased disease spectrum. In order to define the contribution of ADD3 and KAT2B mutations for the patient phenotype, we performed functional experiments in the Drosophila model. We found that both mutations were unable to fully rescue the viability of the respective null mutants of the Drosophila homologs, hts and Gcn5, suggesting that they are indeed pathogenic in flies. While the KAT2B/Gcn5 mutation additionally showed a significantly reduced ability to rescue morphological and functional defects of cardiomyocytes and nephrocytes (podocyte-like cells), this was not the case for the ADD3 mutant rescue. Yet, the simultaneous knockdown of KAT2B and ADD3 synergistically impaired kidney and heart function in flies as well as the adhesion and migration capacity of cultured human podocytes, indicating that mutations in both genes may be required for the full clinical manifestation. Altogether, our studies describe the expansion of the phenotypic spectrum in ADD3 deficiency associated with a homozygous likely pathogenic KAT2B variant and thereby identify KAT2B as a susceptibility gene for kidney and heart disease in ADD3-associated disorders.


Calmodulin-Binding Proteins/genetics , Drosophila/genetics , Mutation , p300-CBP Transcription Factors/genetics , Abnormalities, Multiple/genetics , Adolescent , Adult , Animals , Calmodulin-Binding Proteins/deficiency , Cell Line , Cells, Cultured , DNA Mutational Analysis , Drosophila Proteins/genetics , Female , Heart Diseases/genetics , Homozygote , Humans , Kidney Failure, Chronic/genetics , Male , Pedigree , Phenotype
16.
Nephrol Ther ; 12(7): 544-551, 2016 Dec.
Article Fr | MEDLINE | ID: mdl-27816395

Alport syndrome is an inherited disorder characterized by the association of a progressive haematuric nephropathy with ultrastructural abnormalities of the glomerular basement membranes, a progressive sensorineural hearing loss and sometimes ocular involvement. Its incidence is less than 1 per 5000 individuals and the disease is the cause of about 2% of end stage renal disease in Europe and the United States. Alport syndrome is clinically and genetically heterogeneous. It is related to mutations in the genes encoding one of three chains, α3, α4 α5 of type IV collagen, the main component of basement membranes, expressed in the glomerular basement membrane. COL4A5 mutations are associated with X-linked Alport syndrome, which represents 80 to 85% of cases and is more severe in boys than in girls. Mutations in COL4A3 or COL4A4 are associated with autosomal Alport syndrome. The expression of collagen chains in skin and kidney basement membranes allows for the diagnosis and characterization of the mode of transmission in most patients. It is necessary to diagnose this syndrome because its family involvement, its severity, and the importance of genetic counseling. Angiotensin blockers are increasingly prescribed in proteinuric patients. Prospective studies are needed to assess the effectiveness of these treatments on proteinuria and progression of kidney failure, and to specify indications. Animal studies have shown the potential value of different molecules (protease inhibitors, chemokine receptor blockers, transforming growth factor-ß1 inhibitors, hydroxy-methyl-coenzyme A reductase inhibitors, bone morphogenetic protein-7 inhibitors), hematopoietic stem cells, and of a anti-micro-RNA.


Collagen Type IV/genetics , Cyclosporine/therapeutic use , Genetic Counseling , Immunosuppressive Agents/therapeutic use , Mutation , Nephritis, Hereditary/diagnosis , Nephritis, Hereditary/drug therapy , Biomarkers/metabolism , Diagnosis, Differential , Disease Progression , Glomerular Basement Membrane/pathology , Humans , Nephritis, Hereditary/genetics , Treatment Outcome
17.
Am J Hum Genet ; 99(1): 174-87, 2016 Jul 07.
Article En | MEDLINE | ID: mdl-27392076

Autosomal-dominant tubulo-interstitial kidney disease (ADTKD) encompasses a group of disorders characterized by renal tubular and interstitial abnormalities, leading to slow progressive loss of kidney function requiring dialysis and kidney transplantation. Mutations in UMOD, MUC1, and REN are responsible for many, but not all, cases of ADTKD. We report on two families with ADTKD and congenital anemia accompanied by either intrauterine growth retardation or neutropenia. Ultrasound and kidney biopsy revealed small dysplastic kidneys with cysts and tubular atrophy with secondary glomerular sclerosis, respectively. Exclusion of known ADTKD genes coupled with linkage analysis, whole-exome sequencing, and targeted re-sequencing identified heterozygous missense variants in SEC61A1-c.553A>G (p.Thr185Ala) and c.200T>G (p.Val67Gly)-both affecting functionally important and conserved residues in SEC61. Both transiently expressed SEC6A1A variants are delocalized to the Golgi, a finding confirmed in a renal biopsy from an affected individual. Suppression or CRISPR-mediated deletions of sec61al2 in zebrafish embryos induced convolution defects of the pronephric tubules but not the pronephric ducts, consistent with the tubular atrophy observed in the affected individuals. Human mRNA encoding either of the two pathogenic alleles failed to rescue this phenotype as opposed to a complete rescue by human wild-type mRNA. Taken together, these findings provide a mechanism by which mutations in SEC61A1 lead to an autosomal-dominant syndromic form of progressive chronic kidney disease. We highlight protein translocation defects across the endoplasmic reticulum membrane, the principal role of the SEC61 complex, as a contributory pathogenic mechanism for ADTKD.


Anemia/genetics , Heterozygote , Kidney Diseases/genetics , Mutation , SEC Translocation Channels/genetics , Adult , Aged , Alleles , Amino Acid Sequence , Animals , Biopsy , Child , Chronic Disease , Disease Progression , Endoplasmic Reticulum/metabolism , Exome/genetics , Female , Fetal Growth Retardation/genetics , Genes, Dominant , Golgi Apparatus/metabolism , Humans , Infant, Newborn , Kidney Diseases/pathology , Male , Middle Aged , Models, Molecular , Mutation, Missense/genetics , Neutropenia/genetics , Pedigree , Phenotype , RNA, Messenger/analysis , RNA, Messenger/genetics , SEC Translocation Channels/chemistry , Syndrome , Young Adult , Zebrafish/embryology , Zebrafish/genetics
18.
PLoS Genet ; 12(3): e1005894, 2016 Mar.
Article En | MEDLINE | ID: mdl-26967905

Ciliopathies are a group of genetic multi-systemic disorders related to dysfunction of the primary cilium, a sensory organelle present at the cell surface that regulates key signaling pathways during development and tissue homeostasis. In order to identify novel genes whose mutations would cause severe developmental ciliopathies, >500 patients/fetuses were analyzed by a targeted high throughput sequencing approach allowing exome sequencing of >1200 ciliary genes. NEK8/NPHP9 mutations were identified in five cases with severe overlapping phenotypes including renal cystic dysplasia/hypodysplasia, situs inversus, cardiopathy with hypertrophic septum and bile duct paucity. These cases highlight a genotype-phenotype correlation, with missense and nonsense mutations associated with hypodysplasia and enlarged cystic organs, respectively. Functional analyses of NEK8 mutations in patient fibroblasts and mIMCD3 cells showed that these mutations differentially affect ciliogenesis, proliferation/apoptosis/DNA damage response, as well as epithelial morphogenesis. Notably, missense mutations exacerbated some of the defects due to NEK8 loss of function, highlighting their likely gain-of-function effect. We also showed that NEK8 missense and loss-of-function mutations differentially affect the regulation of the main Hippo signaling effector, YAP, as well as the expression of its target genes in patient fibroblasts and renal cells. YAP imbalance was also observed in enlarged spheroids of Nek8-invalidated renal epithelial cells grown in 3D culture, as well as in cystic kidneys of Jck mice. Moreover, co-injection of nek8 MO with WT or mutated NEK8-GFP RNA in zebrafish embryos led to shortened dorsally curved body axis, similar to embryos injected with human YAP RNA. Finally, treatment with Verteporfin, an inhibitor of YAP transcriptional activity, partially rescued the 3D spheroid defects of Nek8-invalidated cells and the abnormalities of NEK8-overexpressing zebrafish embryos. Altogether, our study demonstrates that NEK8 human mutations cause major organ developmental defects due to altered ciliogenesis and cell differentiation/proliferation through deregulation of the Hippo pathway.


Adaptor Proteins, Signal Transducing/genetics , Cilia/genetics , Phosphoproteins/genetics , Polycystic Kidney Diseases/genetics , Protein Kinases/genetics , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/biosynthesis , Animals , Cell Differentiation/genetics , Cilia/pathology , Female , Genetic Association Studies , Humans , Kidney/metabolism , Kidney/pathology , Mice , Morphogenesis/genetics , Mutation , NIMA-Related Kinases , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/biosynthesis , Polycystic Kidney Diseases/pathology , Porphyrins/administration & dosage , Signal Transduction , Transcription Factors , Verteporfin , YAP-Signaling Proteins , Zebrafish
19.
Nat Commun ; 6: 8666, 2015 Oct 21.
Article En | MEDLINE | ID: mdl-26487268

Ciliopathies are a large group of clinically and genetically heterogeneous disorders caused by defects in primary cilia. Here we identified mutations in TRAF3IP1 (TNF Receptor-Associated Factor Interacting Protein 1) in eight patients from five families with nephronophthisis (NPH) and retinal degeneration, two of the most common manifestations of ciliopathies. TRAF3IP1 encodes IFT54, a subunit of the IFT-B complex required for ciliogenesis. The identified mutations result in mild ciliary defects in patients but also reveal an unexpected role of IFT54 as a negative regulator of microtubule stability via MAP4 (microtubule-associated protein 4). Microtubule defects are associated with altered epithelialization/polarity in renal cells and with pronephric cysts and microphthalmia in zebrafish embryos. Our findings highlight the regulation of cytoplasmic microtubule dynamics as a role of the IFT54 protein beyond the cilium, contributing to the development of NPH-related ciliopathies.


Carrier Proteins/genetics , Kidney Diseases, Cystic/genetics , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Mutation , Retinal Degeneration/genetics , Zebrafish Proteins/genetics , Animals , Blotting, Western , Carrier Proteins/metabolism , Cell Polarity/genetics , Circular Dichroism , Embryo, Nonmammalian , Female , Fluorescent Antibody Technique , Gene Knockout Techniques , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Immunoprecipitation , Kidney Diseases, Cystic/metabolism , Male , Microphthalmos/genetics , Pedigree , Retinal Degeneration/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Zebrafish , Zebrafish Proteins/metabolism
20.
Am J Physiol Renal Physiol ; 308(10): F1155-66, 2015 May 15.
Article En | MEDLINE | ID: mdl-25694483

Cystinosis is an inherited disorder resulting from a mutation in the CTNS gene, causing progressive proximal tubular cell flattening, the so-called swan-neck lesion (SNL), and eventual renal failure. To determine the role of oxidative stress in cystinosis, histologic sections of kidneys from C57BL/6 Ctns(-/-) and wild-type mice were examined by immunohistochemistry and morphometry from 1 wk to 20 mo of age. Additional mice were treated from 1 to 6 mo with vehicle or mitoquinone (MitoQ), an antioxidant targeted to mitochondria. The leading edge of the SNL lost mitochondria and superoxide production, and became surrounded by a thickened tubular basement membrane. Progression of the SNL as determined by staining with lectin from Lotus tetragonolobus accelerated after 3 mo, but was delayed by treatment with MitoQ (38 ± 4% vs. 28 ± 1%, P < 0.01). Through 9 mo, glomeruli had retained renin staining and intact macula densa, whereas SNL expressed transgelin, an actin-binding protein, but neither kidney injury molecule-1 (KIM-1) nor cell death was observed. After 9 mo, clusters of proximal tubules exhibited localized oxidative stress (4-hydroxynonenal binding), expressed KIM-1, and underwent apoptosis, leading to the formation of atubular glomeruli and accumulation of interstitial collagen. We conclude that nephron integrity is initially maintained in the Ctns(-/-) mouse by adaptive flattening of cells of the SNL through loss of mitochondria, upregulation of transgelin, and thickened basement membrane. This adaptation ultimately fails in adulthood, with proximal tubular disruption, formation of atubular glomeruli, and renal failure. Antioxidant treatment targeted to mitochondria delays initiation of the SNL, and may provide therapeutic benefit in children with cystinosis.


Adaptation, Physiological/physiology , Cystinosis/pathology , Cystinosis/physiopathology , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/physiopathology , Oxidative Stress/physiology , Amino Acid Transport Systems, Neutral/deficiency , Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems, Neutral/metabolism , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Cystinosis/genetics , Disease Models, Animal , Female , Hepatitis A Virus Cellular Receptor 1 , Kidney Tubules, Proximal/metabolism , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/drug effects , Mutation/genetics , Organophosphorus Compounds/pharmacology , Superoxides/metabolism , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology
...