Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 9(3): e13963, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36855647

ABSTRACT

Since the outbreak of COVID-19 at the end of 2019, the Chinese government has imposed strict control measures on affected cities, which may have impacted the spatial and temporal pattern of carbon dioxide emissions. This paper follows the quantitative analysis method, experimental method, mathematical method, etc., and quantitatively studies the impact of the epidemic on China's carbon emissions. The combination model of ARIMA and BP neural network is used to predict the actual impact of epidemic situation on China's carbon emissions in 2020, and the spatial autocorrelation analysis method is used to analyze the spatial characteristics of China's provincial carbon emissions, which indicate that China's carbon emissions have consistently maintained a growth trend, from 2.05 billion tons in 2005 to 3.89 billion tons in 2019. Furthermore, the growth rate of carbon emissions and the changing trend of the emission intensity are the same, dropping from 12% in 2005 to 3% in 2019. The emission intensity also dropped from 1.1 in 2005 to 0.6 in 2019, indicating that the trend of increasing carbon emissions in northern provinces and Xinjiang changed significantly from 2005 to 2019. The overall carbon emissions of the 30 provinces in 2020 are predicted to be 4.068 billion tons, while the actual energy carbon emissions will be 3.921 billion tons, suggesting that the pandemic significantly reduced carbon emissions. Among affected provinces, carbon emissions from Hubei, Jiangsu, Shandong, Shanghai, and other places changed significantly, from 0.99, 0.25, 0.43, and 76 million tons in 2019 to 0.88, 0.24, 0.42, and 72 million tons in 2020, respectively. The results show a positive spatial correlation between China's provincial carbon emissions; the high-high and bottom-high agglomeration are mainly among the provinces, mainly distributed in North China and East China. Although the pandemic seriously impacts China's carbon emissions, each province's spatial relationship has not changed significantly.

2.
PLoS One ; 16(8): e0256313, 2021.
Article in English | MEDLINE | ID: mdl-34407135

ABSTRACT

To expand the knowledge on the tempo-spatial patterns of zooplankton and the key modulated factors in urban aquatic ecosystem, we investigated zooplankton and water quality from April 2018 to January 2019 in the hinterland of the Three Gorges Reservoir area, Wanzhou City of China. The results indicated that water quality indicated by the trophic state index (TSI) reached a state of mesotrophication to light eutrophication in the Yangtze River, and a state of moderate- to hyper- eutrophication in its tributaries. Based on the biomass of zooplanktons, Asplanchna priodonta was the most common specie in April; Encentrum sp., Filinia cornuta and Epiphanes senta were the most noticeable species in summer; Cyclopoida Copepodid, Sinocalanus dorrii and Philodina erythrophthalma became the dominant species in winter. Generally, rotifers prevailed in April and August, and copepods became the most popular in January. According to canonical correspondence analysis, nitrate, temperature (T), ammonia, water level and permanganate index (CODMn) significantly influenced the community structure of zooplankton (p < 0.05). The dominant species shifts of zooplankton were partly associated with nutrient level (nitrate and ammonia) under periodic water level fluctuations. Rotifers and protozoans were characterized as high T adapted and CODMn-tolerant species comparing with cladocerans and copepods. The ratio of microzooplankton to mesozooplankton (Pmicro/meso) has presented a strongly positive relationship with T (p < 0.001), as well as Pmicro/meso and CODMn (p < 0.001). It implied that zooplankton tended to miniaturize individual size via species shift under high T and/or CODMn conditions induced by global warming and human activities. The information hints us that climate change and human activities are likely to produce fundamental changes in urban aquatic ecosystem by reorganizing biomass structure of the food web in future.


Subject(s)
Copepoda/physiology , Eutrophication , Rotifera/physiology , Zooplankton/physiology , Ammonia/chemistry , Animals , Biomass , China , Ecosystem , Food Chain , Humans , Lakes/analysis , Lakes/chemistry , Manganese Compounds/chemistry , Nitrates/chemistry , Oxides/chemistry , Seasons , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL