Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 380
Filter
1.
Nat Commun ; 15(1): 8549, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39362880

ABSTRACT

The role of rare non-coding variation in complex human phenotypes is still largely unknown. To elucidate the impact of rare variants in regulatory elements, we performed a whole-genome sequencing association analysis for height using 333,100 individuals from three datasets: UK Biobank (N = 200,003), TOPMed (N = 87,652) and All of Us (N = 45,445). We performed rare ( < 0.1% minor-allele-frequency) single-variant and aggregate testing of non-coding variants in regulatory regions based on proximal-regulatory, intergenic-regulatory and deep-intronic annotation. We observed 29 independent variants associated with height at P < 6 × 10 - 10 after conditioning on previously reported variants, with effect sizes ranging from -7cm to +4.7 cm. We also identified and replicated non-coding aggregate-based associations proximal to HMGA1 containing variants associated with a 5 cm taller height and of highly-conserved variants in MIR497HG on chromosome 17. We have developed an approach for identifying non-coding rare variants in regulatory regions with large effects from whole-genome sequencing data associated with complex traits.


Subject(s)
Body Height , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Whole Genome Sequencing , Humans , Body Height/genetics , Male , Female , Gene Frequency , Genome, Human , Genetic Variation , Phenotype
2.
Diabetologia ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39349773

ABSTRACT

AIMS/HYPOTHESIS: Several studies have reported associations between specific proteins and type 2 diabetes risk in European populations. To better understand the role played by proteins in type 2 diabetes aetiology across diverse populations, we conducted a large proteome-wide association study using genetic instruments across four racial and ethnic groups: African; Asian; Hispanic/Latino; and European. METHODS: Genome and plasma proteome data from the Multi-Ethnic Study of Atherosclerosis (MESA) study involving 182 African, 69 Asian, 284 Hispanic/Latino and 409 European individuals residing in the USA were used to establish protein prediction models by using potentially associated cis- and trans-SNPs. The models were applied to genome-wide association study summary statistics of 250,127 type 2 diabetes cases and 1,222,941 controls from different racial and ethnic populations. RESULTS: We identified three, 44 and one protein associated with type 2 diabetes risk in Asian, European and Hispanic/Latino populations, respectively. Meta-analysis identified 40 proteins associated with type 2 diabetes risk across the populations, including well-established as well as novel proteins not yet implicated in type 2 diabetes development. CONCLUSIONS/INTERPRETATION: Our study improves our understanding of the aetiology of type 2 diabetes in diverse populations. DATA AVAILABILITY: The summary statistics of multi-ethnic type 2 diabetes GWAS of MVP, DIAMANTE, Biobank Japan and other studies are available from The database of Genotypes and Phenotypes (dbGaP) under accession number phs001672.v3.p1. MESA genetic, proteome and covariate data can be accessed through dbGaP under phs000209.v13.p3. All code is available on GitHub ( https://github.com/Arthur1021/MESA-1K-PWAS ).

3.
medRxiv ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39281768

ABSTRACT

We performed large-scale genome-wide gene-sleep interaction analyses of lipid levels to identify novel genetic variants underpinning the biomolecular pathways of sleep-associated lipid disturbances and to suggest possible druggable targets. We collected data from 55 cohorts with a combined sample size of 732,564 participants (87% European ancestry) with data on lipid traits (high-density lipoprotein [HDL-c] and low-density lipoprotein [LDL-c] cholesterol and triglycerides [TG]). Short (STST) and long (LTST) total sleep time were defined by the extreme 20% of the age- and sex-standardized values within each cohort. Based on cohort-level summary statistics data, we performed meta-analyses for the one-degree of freedom tests of interaction and two-degree of freedom joint tests of the main and interaction effect. In the cross-population meta-analyses, the one-degree of freedom variant-sleep interaction test identified 10 loci (P int <5.0e-9) not previously observed for lipids. Of interest, the ASPH locus (TG, LTST) is a target for aspartic and succinic acid metabolism previously shown to improve sleep and cardiovascular risk. The two-degree of freedom analyses identified an additional 7 loci that showed evidence for variant-sleep interaction (P joint <5.0e-9 in combination with P int <6.6e-6). Of these, the SLC8A1 locus (TG, STST) has been considered a potential treatment target for reduction of ischemic damage after acute myocardial infarction. Collectively, the 17 (9 with STST; 8 with LTST) loci identified in this large-scale initiative provides evidence into the biomolecular mechanisms underpinning sleep-duration-associated changes in lipid levels. The identified druggable targets may contribute to the development of novel therapies for dyslipidemia in people with sleep disturbances.

4.
medRxiv ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39228737

ABSTRACT

Clonal hematopoiesis (CH) is defined by the expansion of a lineage of genetically identical cells in blood. Genetic lesions that confer a fitness advantage, such as point mutations or mosaic chromosomal alterations (mCAs) in genes associated with hematologic malignancy, are frequent mediators of CH. However, recent analyses of both single cell-derived colonies of hematopoietic cells and population sequencing cohorts have revealed CH frequently occurs in the absence of known driver genetic lesions. To characterize CH without known driver genetic lesions, we used 51,399 deeply sequenced whole genomes from the NHLBI TOPMed sequencing initiative to perform simultaneous germline and somatic mutation analyses among individuals without leukemogenic point mutations (LPM), which we term CH-LPMneg. We quantified CH by estimating the total mutation burden. Because estimating somatic mutation burden without a paired-tissue sample is challenging, we developed a novel statistical method, the Genomic and Epigenomic informed Mutation (GEM) rate, that uses external genomic and epigenomic data sources to distinguish artifactual signals from true somatic mutations. We performed a genome-wide association study of GEM to discover the germline determinants of CH-LPMneg. After fine-mapping and variant-to-gene analyses, we identified seven genes associated with CH-LPMneg (TCL1A, TERT, SMC4, NRIP1, PRDM16, MSRA, SCARB1), and one locus associated with a sex-associated mutation pathway (SRGAP2C). We performed a secondary analysis excluding individuals with mCAs, finding that the genetic architecture was largely unaffected by their inclusion. Functional analyses of SMC4 and NRIP1 implicated altered HSC self-renewal and proliferation as the primary mediator of mutation burden in blood. We then performed comprehensive multi-tissue transcriptomic analyses, finding that the expression levels of 404 genes are associated with GEM. Finally, we performed phenotypic association meta-analyses across four cohorts, finding that GEM is associated with increased white blood cell count and increased risk for incident peripheral artery disease, but is not significantly associated with incident stroke or coronary disease events. Overall, we develop GEM for quantifying mutation burden from WGS without a paired-tissue sample and use GEM to discover the genetic, genomic, and phenotypic correlates of CH-LPMneg.

5.
Sci Rep ; 14(1): 20694, 2024 09 05.
Article in English | MEDLINE | ID: mdl-39237673

ABSTRACT

Metabolic comorbidities, such as obesity and diabetes, are associated with subclinical alterations in both cardiac structure/function and natriuretic peptides prior to the onset of heart failure (HF). Despite this, the exact metabolic pathways of cardiac dysfunction which precede HF are not well-defined. Among older individuals without HF in the Multi-Ethnic Study of Atherosclerosis (MESA), we evaluated the associations of 47 circulating metabolites measured by 1H-NMR with echocardiographic measures of cardiac structure and function. We then evaluated associations of significant metabolites with circulating N-terminal pro-B-type natriuretic peptide (NT-proBNP). In a separate cohort, we evaluated differences between top metabolites in patients with HF with preserved ejection fraction (HFpEF) and comorbidity-matched controls. Genetic variants associated with top metabolites (mQTLs) were then related to echocardiographic measures and NT-proBNP. Among 3440 individuals with metabolic and echocardiographic data in MESA (62 ± 10 years, 52% female, 38% White), 10 metabolites broadly reflective of glucose and amino acid metabolism were associated with at least 1 measure of cardiac structure or function. Of these 10 metabolites, 4 (myo-inositol, glucose, dimethylsulfone, carnitine) were associated with higher NT-proBNP and 2 (d-mannose, acetone) were associated with lower NT-proBNP. In a separate cohort, patients with HFpEF had higher circulating myo-inositol levels compared with comorbidity-matched controls. Genetic analyses revealed that 1 of 6 known myo-inositol mQTLs conferred risk of higher NT-proBNP. In conclusion, metabolomic profiling identifies several novel metabolites associated with cardiac dysfunction in a cohort at high risk for HF, revealing pathways potentially relevant to future HF risk.


Subject(s)
Heart Failure , Metabolomics , Humans , Female , Male , Middle Aged , Aged , Metabolomics/methods , Heart Failure/metabolism , Heart Failure/genetics , Natriuretic Peptide, Brain/blood , Natriuretic Peptide, Brain/metabolism , Peptide Fragments/blood , Stroke Volume , Echocardiography , Metabolome , Biomarkers/blood , Aged, 80 and over , Inositol/metabolism
6.
Mitochondrion ; 79: 101954, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39245194

ABSTRACT

We rigorously assessed a comprehensive association testing framework for heteroplasmy, employing both simulated and real-world data. This framework employed a variant allele fraction (VAF) threshold and harnessed multiple gene-based tests for robust identification and association testing of heteroplasmy. Our simulation studies demonstrated that gene-based tests maintained an appropriate type I error rate at α = 0.001. Notably, when 5 % or more heteroplasmic variants within a target region were linked to an outcome, burden-extension tests (including the adaptive burden test, variable threshold burden test, and z-score weighting burden test) outperformed the sequence kernel association test (SKAT) and the original burden test. Applying this framework, we conducted association analyses on whole-blood derived heteroplasmy in 17,507 individuals of African and European ancestries (31 % of African Ancestry, mean age of 62, with 58 % women) with whole genome sequencing data. We performed both cohort- and ancestry-specific association analyses, followed by meta-analysis on both pooled samples and within each ancestry group. Our results suggest that mtDNA-encoded genes/regions are likely to exhibit varying rates in somatic aging, with the notably strong associations observed between heteroplasmy in the RNR1 and RNR2 genes (p < 0.001) and advance aging by the Original Burden test. In contrast, SKAT identified significant associations (p < 0.001) between diabetes and the aggregated effects of heteroplasmy in several protein-coding genes. Further research is warranted to validate these findings. In summary, our proposed statistical framework represents a valuable tool for facilitating association testing of heteroplasmy with disease traits in large human populations.

7.
Vasc Med ; : 1358863X241270911, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39239865

ABSTRACT

INTRODUCTION: The absence of coronary artery calcium (CAC = 0) is associated with low risk of stroke events; however, predictors of incident stroke among those with CAC = 0 are not known. METHODS: Individual participant-level data were pooled from three prospective cohorts (Multi-Ethnic Study of Atherosclerosis, Jackson Heart Study, and Framingham Heart Study). Multivariable-adjusted Cox proportional hazards models were used to study the association between cardiovascular risk factors and incident adjudicated stroke among individuals with CAC = 0 who were free of clinical atherosclerotic cardiovascular disease at baseline. RESULTS: Among 6180 participants (mean age 53 [SD 11] years, 62% women, and 44% White, 36% Black, and 20% other individuals), over a median (IQR) follow up of 15 (12-16) years, there were 122 strokes (95 ischemic, 27 hemorrhagic) with an overall unadjusted event rate of 2.0 per 1000 person-years. After multivariable adjustment, risk factors associated with overall stroke included (hazard ratio [95% CI]) systolic blood pressure (SBP): 1.19 (1.05-1.36) per 10-mmHg increase and carotid intima-media thickness (CIMT): 1.21 (1.04-1.42) per 0.1-mm increment. Current cigarette smoking: 2.68 (1.11-6.50), SBP: 1.23 (1.06-1.42) per 10-mmHg increase, and CIMT: 1.25 (1.04-1.49) per 0.1-mm increment were associated with ischemic stroke, whereas C-reactive protein was associated with hemorrhagic stroke risk (0.49, 0.25-0.93). CONCLUSION: In a large cohort of individuals with CAC = 0, the rate for incident stroke was low (2.0 per 1000-person years) and was associated with modifiable risk factors.

8.
J Am Heart Assoc ; 13(19): e035693, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39344648

ABSTRACT

BACKGROUND: Inflammation is a feature of coronary heart disease (CHD), but the role of proinflammatory microbial infection in CHD remains understudied. METHODS AND RESULTS: CHD was defined in the MESA (Multi-Ethnic Study of Atherosclerosis) as myocardial infarction (251 participants), resuscitated arrest (2 participants), and CHD death (80 participants). We analyzed sequencing reads from 4421 MESA participants in the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine program using the PathSeq workflow of the Genome Analysis Tool Kit and a 65-gigabase microbial reference. Paired reads aligning to 840 microbes were detected in >1% of participants. The association of the presence of microbe reads with incident CHD (follow-up, ~18 years) was examined. First, important variables were ascertained using a single regularized Cox proportional hazard model, examining change of risk as a function of presence of microbe with age, sex, education level, Life's Simple 7, and inflammation. For variables of importance, the hazard ratio (HR) was estimated in separate (unregularized) Cox proportional hazard models including the same covariates (significance threshold Bonferroni corrected P<6×10-5, 0.05/840). Reads from 2 microbes were significantly associated with CHD: Gemella morbillorum (HR, 3.14 [95% CI, 1.92-5.12]; P=4.86×10-6) and Pseudomonas species NFACC19-2 (HR, 3.22 [95% CI, 2.03-5.41]; P=1.58×10-6). CONCLUSIONS: Metagenomics of whole-genome sequence reads opens a possible frontier for detection of pathogens for chronic diseases. The association of G morbillorum and Pseudomonas species reads with CHD raises the possibilities that microbes may drive atherosclerotic inflammation and that treatments for specific pathogens may provide clinical utility for CHD reduction.


Subject(s)
Coronary Disease , Metagenomics , Humans , Male , Female , Aged , Metagenomics/methods , Middle Aged , Coronary Disease/microbiology , Coronary Disease/genetics , Coronary Disease/diagnosis , United States/epidemiology , Aged, 80 and over , Risk Factors , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/diagnosis , Gram-Positive Bacterial Infections/epidemiology , Incidence
9.
J Clin Invest ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316441

ABSTRACT

BACKGROUND: Most genome wide association studies (GWAS) of plasma proteomics have focused on White individuals of European ancestry, limiting biological insight from other ancestry enriched protein quantitative loci (pQTL). METHODS: We conducted a discovery GWAS of ~3,000 plasma proteins measured by the antibody based Olink platform in 1,054 Black adults from the Jackson Heart Study (JHS), and validated our findings in the Multi-Ethnic Study of Atherosclerosis (MESA). The genetic architecture of identified pQTLs were further explored through fine mapping and admixture association analysis. Finally, using our pQTL findings, we performed a phenome wide association study (PheWAS) across two large multi-ethnic electronic health record (EHR) systems in All of Us and BioMe. RESULTS: We identified 1002 pQTLs for 925 proteins. Fine mapping and admixture analyses suggested allelic heterogeneity of the plasma proteome across diverse populations. We identified associations for variants enriched in African ancestry, many in diseases that lack precise biomarkers, including cis-pQTLs for Cathepsin L (CTSL) and Siglec-9 that were linked with sarcoidosis and non-Hodgkin's lymphoma, respectively. We found concordant associations across clinical diagnoses and laboratory measurements, elucidating disease pathways, including a cis-pQTL associated with circulating CD58, white blood cell count, and multiple sclerosis. CONCLUSIONS: Our findings emphasize the value of leveraging diverse populations to enhance biological insights from proteomics GWAS, and we have made this resource readily available as an interactive web portal.

10.
J Am Heart Assoc ; 13(17): e034760, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39206732

ABSTRACT

BACKGROUND: Ventricular repolarization time (ECG QT and JT intervals) is associated with malignant arrhythmia. Genome-wide association studies have identified 230 independent loci for QT and JT; however, 50% of their heritability remains unexplained. Previous work supports a causal effect of lower serum calcium concentrations on longer ventricular repolarization time. We hypothesized calcium interactions with QT and JT variant associations could explain a proportion of the missing heritability. METHODS AND RESULTS: We performed genome-wide calcium interaction analyses for QT and JT intervals. Participants were stratified by their calcium level relative to the study distribution (top or bottom 20%). We performed a 2-stage analysis (genome-wide discovery [N=62 532] and replication [N=59 861] of lead variants) and a single-stage genome-wide meta-analysis (N=122 393, [European ancestry N=117 581, African ancestry N=4812]). We also calculated 2-degrees of freedom joint main and interaction and 1-degree of freedom interaction P values. In 2-stage and single-stage analyses, 50 and 98 independent loci, respectively, were associated with either QT or JT intervals (2-degrees of freedom joint main and interaction P value <5×10-8). No lead variant had a significant interaction result after correcting for multiple testing and sensitivity analyses provided similar findings. Two loci in the single-stage meta-analysis were not reported previously (SPPL2B and RFX6). CONCLUSIONS: We have found limited support for an interaction effect of serum calcium on QT and JT variant associations despite sample sizes with suitable power to detect relevant effects. Therefore, such effects are unlikely to explain a meaningful proportion of the heritability of QT and JT, and factors including rare variation and other environmental interactions need to be considered.


Subject(s)
Calcium , Genome-Wide Association Study , Humans , Action Potentials , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/blood , Arrhythmias, Cardiac/diagnosis , Calcium/blood , Electrocardiography , Genetic Predisposition to Disease , Heart Rate/genetics , Heart Rate/physiology , Polymorphism, Single Nucleotide , Risk Factors , Time Factors
11.
Mayo Clin Proc ; 99(9): 1422-1434, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39115511

ABSTRACT

OBJECTIVE: To assess the role of the systolic blood pressure polygenic risk score (SBP-PRS) in antihypertensive treatment initiation and its comparative efficacy with coronary artery calcium (CAC) scores. PATIENTS AND METHODS: This retrospective cohort study included participants with whole genome sequencing data who underwent CAC scanning between 1971 and 2008, were free of prevalent cardiovascular disease (CVD), and were not taking antihypertensive medications. The cohort was stratified by blood pressure (BP) treatment group and SBP-PRS (low/intermediate, first and second tertiles; high, third tertile) and CAC score (0 vs >0) subgroups. The primary outcome was the first occurence of adjudicated coronary heart disease, heart failure, or stroke during 10-year follow-up. The 10-year number needed to treat (NNT) to prevent 1 event of the primary outcome was estimated. A relative risk reduction of 25% for the primary outcome based on the treatment effect of intensive control (SBP <120 mm Hg) of hypertension in SPRINT (Systolic Blood Pressure Intervention Trial) was used for estimating the NNT. RESULTS: Among the 5267 study participants, the median age was 59 years (interquartile range, 51-68 years); 2817 (53.5%) were women and 2880 (54.7%) were non-White individuals. Among 1317 individuals with elevated BP/low-risk stage 1 hypertension not recommended treatment, the 10-year incidence rate of the primary outcome was 5.6% for low/intermediate SBP-PRS and 6.3% for high SBP-PRS with NNTs of 63 and 59, respectively. Similarly, the 10-year incidence rate of the primary outcome was 2.9% for CAC score 0 and 9.7% for CAC score greater than 0, with NNTs of 117 and 37, respectively. CONCLUSION: Including genetic information in risk estimation of individuals with elevated BP/low-risk stage 1 hypertension has modest value in the initiation of antihypertensive therapy. Genetic risk and CAC both have efficacy in personalizing antihypertensive therapy.


Subject(s)
Antihypertensive Agents , Coronary Artery Disease , Hypertension , Humans , Female , Middle Aged , Male , Antihypertensive Agents/therapeutic use , Hypertension/drug therapy , Hypertension/genetics , Hypertension/epidemiology , Retrospective Studies , Aged , Coronary Artery Disease/genetics , Coronary Artery Disease/epidemiology , Coronary Artery Disease/drug therapy , Precision Medicine/methods , Vascular Calcification/genetics , Vascular Calcification/epidemiology , Risk Assessment , Blood Pressure/drug effects , Risk Factors , Genetic Predisposition to Disease , Coronary Vessels/diagnostic imaging , Cohort Studies
12.
Res Sq ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39070651

ABSTRACT

Although both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discover 22 novel gene-sleep duration interaction loci for blood pressure, mapped to 23 genes. Investigating these genes' functional implications shed light on neurological, thyroidal, bone metabolism, and hematopoietic pathways that necessitate future investigation for blood pressure management that caters to sleep health lifestyle. Non-overlap between short sleep (12) and long sleep (10) interactions underscores the plausible nature of distinct influences of both sleep duration extremes in cardiovascular health. Several of our loci are specific towards a particular population background or sex, emphasizing the importance of addressing heterogeneity entangled in gene-environment interactions, when considering precision medicine design approaches for blood pressure management.

13.
Nat Aging ; 4(8): 1043-1052, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38834882

ABSTRACT

Clonal hematopoiesis of indeterminate potential (CHIP), whereby somatic mutations in hematopoietic stem cells confer a selective advantage and drive clonal expansion, not only correlates with age but also confers increased risk of morbidity and mortality. Here, we leverage genetically predicted traits to identify factors that determine CHIP clonal expansion rate. We used the passenger-approximated clonal expansion rate method to quantify the clonal expansion rate for 4,370 individuals in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) cohort and calculated polygenic risk scores for DNA methylation aging, inflammation-related measures and circulating protein levels. Clonal expansion rate was significantly associated with both genetically predicted and measured epigenetic clocks. No associations were identified with inflammation-related lab values or diseases and CHIP expansion rate overall. A proteome-wide search identified predicted circulating levels of myeloid zinc finger 1 and anti-Müllerian hormone as associated with an increased CHIP clonal expansion rate and tissue inhibitor of metalloproteinase 1 and glycine N-methyltransferase as associated with decreased CHIP clonal expansion rate. Together, our findings identify epigenetic and proteomic patterns associated with the rate of hematopoietic clonal expansion.


Subject(s)
Clonal Hematopoiesis , Epigenesis, Genetic , Proteomics , Clonal Hematopoiesis/genetics , Humans , DNA Methylation , Female , Male , Hematopoietic Stem Cells/metabolism , Middle Aged , Proteome/metabolism , Proteome/genetics , Tissue Inhibitor of Metalloproteinase-1/genetics , Aged
14.
Circ Cardiovasc Imaging ; 17(6): e016372, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38889215

ABSTRACT

BACKGROUND: Aortic valve calcification (AVC), Lp(a) [lipoprotein(a)], and low-density lipoprotein cholesterol (LDL-C) are associated with severe aortic stenosis (AS). We aimed to determine which of these risk factors were most strongly associated with the risk of incident severe AS. METHODS: A total of 6792 participants from the MESA study (Multi-Ethnic Study of Atherosclerosis) had computed tomography-quantified AVC, Lp(a), and LDL-C values at MESA visit 1 (2000-2002). We calculated the absolute event rate of incident adjudicated severe AS per 1000 person-years and performed multivariable adjusted Cox proportional hazards regression. RESULTS: The mean age was 62 years old, and 47% were women. Over a median 16.7-year follow-up, the rate of incident severe AS increased exponentially with higher AVC, regardless of Lp(a) or LDL-C values. Participants with AVC=0 had a very low rate of severe AS even with elevated Lp(a) ≥50 mg/dL (<0.1/1000 person-years) or LDL-C ≥130 mg/dL (0.1/1000 person-years). AVC >0 was strongly associated with severe AS when Lp(a) <50 mg/dL hazard ratio (HR) of 33.8 (95% CI, 16.4-70.0) or ≥50 mg/dL HR of 61.5 (95% CI, 7.7-494.2) and when LDL-C <130 mg/dL HR of 31.1 (95% CI, 14.4-67.1) or ≥130 mg/dL HR of 50.2 (95% CI, 13.2-191.9). CONCLUSIONS: AVC better identifies people at high risk for severe AS compared with Lp(a) or LDL-C, and people with AVC=0 have a very low long-term rate of severe AS regardless of Lp(a) or LDL-C level. These results suggest AVC should be the preferred prognostic risk marker to identify patients at high risk for severe AS, which may help inform participant selection for future trials testing novel strategies to prevent severe AS.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Biomarkers , Calcinosis , Cholesterol, LDL , Lipoprotein(a) , Severity of Illness Index , Humans , Aortic Valve Stenosis/blood , Aortic Valve Stenosis/diagnosis , Aortic Valve Stenosis/epidemiology , Aortic Valve Stenosis/diagnostic imaging , Female , Lipoprotein(a)/blood , Male , Middle Aged , Cholesterol, LDL/blood , Aortic Valve/diagnostic imaging , Aortic Valve/pathology , Calcinosis/blood , Calcinosis/diagnostic imaging , Calcinosis/diagnosis , Calcinosis/epidemiology , Calcinosis/ethnology , Aged , Biomarkers/blood , Risk Factors , Risk Assessment , Incidence , United States/epidemiology , Aged, 80 and over , Predictive Value of Tests , Time Factors , Prospective Studies , Proportional Hazards Models , Tomography, X-Ray Computed , Prognosis
15.
Atherosclerosis ; 397: 117596, 2024 10.
Article in English | MEDLINE | ID: mdl-38890039

ABSTRACT

BACKGROUND AND AIMS: Calcific aortic valve disease is associated with increased thrombin formation, platelet activation, decreased fibrinolysis, and subclinical brain infarcts. We examined the long-term association of aortic valve calcification (AVC) with newly diagnosed dementia and incident stroke in the Multi-Ethnic Study of Atherosclerosis (MESA). METHODS: AVC was measured using non-contrast cardiac CT at Visit 1. We examined AVC as a continuous (log-transformed) and categorical variable (0, 1-99, 100-299, ≥300). Newly diagnosed dementia was adjudicated using International Classification of Disease codes. Stroke was adjudicated from medical records. We calculated absolute event rates (per 1000 person-years) and multivariable adjusted Cox proportional hazards ratios (HR). RESULTS: Overall, 6812 participants had AVC quantified with a mean age of 62.1 years old, 52.9 % were women, and the median 10-year estimated atherosclerotic cardiovascular disease (ASCVD) risk was 13.5 %. Participants with AVC >0 were older and less likely to be women compared to those with AVC=0. Over a median 16-year follow-up, there were 535 cases of dementia and 376 cases of stroke. The absolute risk of newly diagnosed dementia increased in a stepwise pattern with higher AVC scores, and stroke increased in a logarithmic pattern. In multivariable analyses, AVC was significantly associated with newly diagnosed dementia as a log-transformed continuous variable (HR 1.09; 95 % CI 1.04-1.14) and persons with AVC ≥300 had nearly a two-fold higher risk (HR 1.77; 95 % CI 1.14-2.76) compared to those with AVC=0. AVC was associated with an increased risk of stroke after adjustment for age, sex, and race/ethnicity, but not after adjustment for ASCVD risk factors. CONCLUSIONS: After multivariable adjustment, AVC >0 was significantly associated with an increased risk of newly diagnosed dementia, but not incident stroke. This suggests that AVC may be an important risk factor for the long-term risk of dementia beyond traditional ASCVD risk factors.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Calcinosis , Dementia , Stroke , Humans , Female , Male , Aged , Aortic Valve/diagnostic imaging , Aortic Valve/pathology , Stroke/epidemiology , Stroke/ethnology , Dementia/epidemiology , Dementia/ethnology , Middle Aged , Calcinosis/ethnology , Risk Factors , Aged, 80 and over , Aortic Valve Stenosis/ethnology , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/epidemiology , Incidence , United States/epidemiology , Proportional Hazards Models , Risk Assessment , Time Factors , Prospective Studies , Atherosclerosis/ethnology , Multivariate Analysis , Tomography, X-Ray Computed
16.
JAMA Cardiol ; 9(8): 713-722, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38865108

ABSTRACT

Importance: Blood pressure response during acute exercise (exercise blood pressure [EBP]) is associated with the future risk of hypertension and cardiovascular disease (CVD). Biochemical characterization of EBP could inform disease biology and identify novel biomarkers of future hypertension. Objective: To identify protein markers associated with EBP and test their association with incident hypertension. Design, Setting, and Participants: This study assayed 4977 plasma proteins in 681 healthy participants (from 763 assessed) of the Health, Risk Factors, Exercise Training and Genetics (HERITAGE; data collection from January 1993 to December 1997 and plasma proteomics from January 2019 to January 2020) Family Study at rest who underwent 2 cardiopulmonary exercise tests. Individuals were free of CVD at the time of recruitment. Individuals with resting SBP ≥160 mm Hg or DBP ≥100 mm Hg or taking antihypertensive drug therapy were excluded from the study. The association between resting plasma protein levels to both resting BP and EBP was evaluated. Proteins associated with EBP were analyzed for their association with incident hypertension in the Framingham Heart Study (FHS; n = 1177) and validated in the Jackson Heart Study (JHS; n = 772) and Multi-Ethnic Study of Atherosclerosis (MESA; n = 1367). Proteins associated with incident hypertension were tested for putative causal links in approximately 700 000 individuals using cis-protein quantitative loci mendelian randomization (cis-MR). Data were analyzed from January 2023 to January 2024. Exposures: Plasma proteins. Main Outcomes and Measures: EBP was defined as the BP response during a fixed workload (50 W) on a cycle ergometer. Hypertension was defined as BP ≥140/90 mm Hg or taking antihypertensive medication. Results: Among the 681 participants in the HERITAGE Family Study, the mean (SD) age was 34 (13) years; 366 participants (54%) were female; 238 (35%) were self-reported Black and 443 (65%) were self-reported White. Proteomic profiling of EBP revealed 34 proteins that would not have otherwise been identified through profiling of resting BP alone. Transforming growth factor ß receptor 3 (TGFBR3) and prostaglandin D2 synthase (PTGDS) had the strongest association with exercise systolic BP (SBP) and diastolic BP (DBP), respectively (TGFBR3: exercise SBP, ß estimate, -3.39; 95% CI, -4.79 to -2.00; P = 2.33 × 10-6; PTGDS: exercise DBP ß estimate, -2.50; 95% CI, -3.29 to -1.70; P = 1.18 × 10-9). In fully adjusted models, TGFBR3 was inversely associated with incident hypertension in FHS, JHS, and MESA (hazard ratio [HR]: FHS, 0.86; 95% CI, 0.75-0.97; P = .01; JHS, 0.87; 95% CI, 0.77-0.97; P = .02; MESA, 0.84; 95% CI, 0.71-0.98; P = .03; pooled cohort, 0.86; 95% CI, 0.79-0.92; P = 6 × 10-5). Using cis-MR, genetically predicted levels of TGFBR3 were associated with SBP, hypertension, and CVD events (SBP: ß, -0.38; 95% CI, -0.64 to -0.11; P = .006; hypertension: odds ratio [OR], 0.99; 95% CI, 0.98-0.99; P < .001; heart failure with hypertension: OR, 0.86; 95% CI, 0.77-0.97; P = .01; CVD: OR, 0.84; 95% CI, 0.77-0.92; P = 8 × 10-5; cerebrovascular events: OR, 0.77; 95% CI, 0.70-0.85; P = 5 × 10-7). Conclusions and Relevance: Plasma proteomic profiling of EBP identified a novel protein, TGFBR3, which may protect against elevated BP and long-term CVD outcomes.


Subject(s)
Blood Pressure , Exercise , Hypertension , Proteomics , Humans , Hypertension/epidemiology , Hypertension/blood , Female , Male , Blood Pressure/physiology , Middle Aged , Exercise/physiology , Biomarkers/blood , Adult , Incidence , Exercise Test , Blood Proteins/metabolism , Aged
17.
Res Sq ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38699335

ABSTRACT

Background: Epigenome-wide association studies have revealed multiple DNA methylation sites (CpGs) associated with alcohol consumption, an important lifestyle risk factor for cardiovascular diseases. Results: We generated an alcohol consumption epigenetic risk score (ERS) based on previously reported 144 alcohol-associated CpGs and examined the association of the ERS with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension (HTN) in 3,898 Framingham Heart Study (FHS) participants. We found an association of alcohol intake with the ERS in the meta-analysis with 0.09 units higher ERS per drink consumed per day (p < 0.0001). Cross-sectional analyses in FHS revealed that a one-unit increment of the ERS was associated with 1.93 mm Hg higher SBP (p = 4.64E-07), 0.68 mm Hg higher DBP (p = 0.006), and an odds ratio of 1.78 for HTN (p < 2E-16). Meta-analysis of the cross-sectional association of the ERS with BP traits in eight independent external cohorts (n = 11,544) showed similar relationships with blood pressure levels, i.e., a one-unit increase in ERS was associated with 0.74 (p = 0.002) and 0.50 (p = 0.0006) mm Hg higher SBP and DBP, but could not confirm the association with hypertension. Longitudinal analyses in FHS (n = 3,260) and five independent external cohorts (n = 4,021) showed that the baseline ERS was not associated with a change in blood pressure over time or with incident HTN. Conclusions: Our findings provide proof-of-concept that utilizing an ERS is a useful approach to capture the recent health consequences of lifestyle behaviors such as alcohol consumption.

18.
Sci Rep ; 14(1): 12436, 2024 05 30.
Article in English | MEDLINE | ID: mdl-38816422

ABSTRACT

We construct non-linear machine learning (ML) prediction models for systolic and diastolic blood pressure (SBP, DBP) using demographic and clinical variables and polygenic risk scores (PRSs). We developed a two-model ensemble, consisting of a baseline model, where prediction is based on demographic and clinical variables only, and a genetic model, where we also include PRSs. We evaluate the use of a linear versus a non-linear model at both the baseline and the genetic model levels and assess the improvement in performance when incorporating multiple PRSs. We report the ensemble model's performance as percentage variance explained (PVE) on a held-out test dataset. A non-linear baseline model improved the PVEs from 28.1 to 30.1% (SBP) and 14.3% to 17.4% (DBP) compared with a linear baseline model. Including seven PRSs in the genetic model computed based on the largest available GWAS of SBP/DBP improved the genetic model PVE from 4.8 to 5.1% (SBP) and 4.7 to 5% (DBP) compared to using a single PRS. Adding additional 14 PRSs computed based on two independent GWASs further increased the genetic model PVE to 6.3% (SBP) and 5.7% (DBP). PVE differed across self-reported race/ethnicity groups, with primarily all non-White groups benefitting from the inclusion of additional PRSs. In summary, non-linear ML models improves BP prediction in models incorporating diverse populations.


Subject(s)
Blood Pressure , Genome-Wide Association Study , Machine Learning , Multifactorial Inheritance , Phenotype , Humans , Blood Pressure/genetics , Multifactorial Inheritance/genetics , Genome-Wide Association Study/methods , Risk Factors , Male , Female , Genetic Predisposition to Disease , Models, Genetic , Hypertension/genetics , Hypertension/physiopathology , Middle Aged , Genetic Risk Score
19.
Nat Commun ; 15(1): 3800, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714703

ABSTRACT

Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well understood. We used the Passenger-Approximated Clonal Expansion Rate (PACER) method to estimate clonal expansion rate as PACER scores for 6,381 individuals in the NHLBI TOPMed cohort with gain, loss, and copy-neutral loss of heterozygosity mCAs. Our mCA fitness estimates, derived by aggregating per-individual PACER scores, were correlated (R2 = 0.49) with an alternative approach that estimated fitness of mCAs in the UK Biobank using population-level distributions of clonal fraction. Among individuals with JAK2 V617F clonal hematopoiesis of indeterminate potential or mCAs affecting the JAK2 gene on chromosome 9, PACER score was strongly correlated with erythrocyte count. In a cross-sectional analysis, genome-wide association study of estimates of mCA expansion rate identified a TCL1A locus variant associated with mCA clonal expansion rate, with suggestive variants in NRIP1 and TERT.


Subject(s)
Chromosome Aberrations , Clonal Hematopoiesis , Mosaicism , Humans , Clonal Hematopoiesis/genetics , Male , Female , Genome-Wide Association Study , Janus Kinase 2/genetics , Telomerase/genetics , Telomerase/metabolism , Loss of Heterozygosity , Cross-Sectional Studies , Mutation , Middle Aged , Hematopoietic Stem Cells/metabolism , Polymorphism, Single Nucleotide , Aged
20.
medRxiv ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38699360

ABSTRACT

Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer's disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole genome sequencing of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program. This approach enabled us to identify differences in mLOY frequencies across populations defined by genetic similarity, revealing a higher frequency of mLOY in the European American (EA) ancestry group compared to those of Hispanic American (HA), African American (AA), and East Asian (EAS) ancestry. Further, we identified two genes ( CFHR1 and LRP6 ) that harbor multiple rare, putatively deleterious variants associated with mLOY susceptibility, show that subsets of human hematopoietic stem cells are enriched for activity of mLOY susceptibility variants, and that certain alleles on chromosome Y are more likely to be lost than others.

SELECTION OF CITATIONS
SEARCH DETAIL