Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
World J Microbiol Biotechnol ; 40(9): 267, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004689

ABSTRACT

As an efficient and safe industrial bacterium, Corynebacterium glutamicum has extensive application in amino acid production. However, it often faces oxidative stress induced by reactive oxygen species (ROS), leading to diminished production efficiency. To enhance the robustness of C. glutamicum, numerous studies have focused on elucidating its regulatory mechanisms under various stress conditions such as heat, acid, and sulfur stress. However, a comprehensive review of its defense mechanisms against oxidative stress is needed. This review offers an in-depth overview of the mechanisms C. glutamicum employs to manage oxidative stress. It covers both enzymatic and non-enzymatic systems, including antioxidant enzymes, regulatory protein families, sigma factors involved in transcription, and physiological redox reduction pathways. This review provides insights for advancing research on the antioxidant mechanisms of C. glutamicum and sheds light on its potential applications in industrial production.


Subject(s)
Antioxidants , Bacterial Proteins , Corynebacterium glutamicum , Gene Expression Regulation, Bacterial , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , Sigma Factor , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/genetics , Antioxidants/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Reactive Oxygen Species/metabolism , Sigma Factor/metabolism , Sigma Factor/genetics
2.
Folia Histochem Cytobiol ; 62(2): 76-86, 2024.
Article in English | MEDLINE | ID: mdl-38912568

ABSTRACT

INTRODUCTION: Diabetic cataract (DC) is a common ocular complication of diabetes. Mitofusin 2 (MFN2), a mitochondrial fusion protein, is involved in the pathogenesis of cataract and diabetic complications. However, its role and molecular mechanisms in DC remain unclear. MATERIALS AND METHODS: DC models in rats were induced by intraperitoneal injection of streptozocin (STZ) for 12 weeks. We measured the body weight of rats, blood glucose concentrations, sorbitol dehydrogenase (SDH) activity and advanced glycation end products (AGE) content in the lenses of rats. MFN2 mRNA and protein expression levels in the lenses were detected by RT-qPCR and western blot assays. In vitro, human lens epithelial (HLE) B3 cells were treated for 48 h with 25 mM glucose (high glucose, HG) to induce cell damage. To determine the role of MFN2 in HG-induced cell damage, HLE-B3 cells were transfected with lentivirus loaded with MFN2 overexpression plasmid or short hairpin RNA (shRNA) to overexpress or knock down MFN2 expression, followed by HG exposure. Cell viability was assessed by CCK-8 assay. Flow cytometry was used to detect cell apoptosis and reactive oxygen species (ROS) level. JC-1 staining showed the changes in mitochondrial membrane potential (Δψm). The mediators related to apoptosis, mitochondrial damage, and autophagy were determined. RESULTS: STZ-administrated rats showed reduced body weight, increased blood glucose levels, elevated SDH activity and AGE content, suggesting successful establishment of the DC rat model. Interestingly, MFN2 expression was significantly downregulated in DC rat lens and HG-induced HLE-B3 cells. Further analysis showed that under HG conditions, MFN2 overexpression enhanced cell viability and inhibited apoptosis accompanied by decreased Bax, cleaved caspase-9 and increased Bcl-2 expression in HLE-B3 cells. MFN2 overexpression also suppressed the mitochondrial damage elicited by HG as manifested by reduced ROS production, recovered Δψm and increased mitochondrial cytochrome c (Cyto c) level. Moreover, MFN2 overexpression increased LC3BⅡ/LC3BⅠ ratio and Beclin-1 expression, but decreased p62 level, and blocked the phosphorylation of mTOR in HG-treated HLE-B3 cells. In contrast, MFN2 silencing exerted opposite effects. CONCLUSIONS: Presented findings indicate that MFN2 expression may be essential for preventing lens epithelial cell apoptosis during development of diabetic cataract.


Subject(s)
Apoptosis , Autophagy , Epithelial Cells , GTP Phosphohydrolases , Glucose , Lens, Crystalline , Mitochondria , Apoptosis/drug effects , Animals , Humans , Autophagy/drug effects , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Rats , Lens, Crystalline/metabolism , Lens, Crystalline/drug effects , Rats, Sprague-Dawley , Male , Diabetes Mellitus, Experimental/metabolism , Reactive Oxygen Species/metabolism , Cell Line , Cataract/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Membrane Potential, Mitochondrial/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL