Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Breast Cancer Res ; 26(1): 108, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951862

ABSTRACT

BACKGROUND: Metastasis, the spread, and growth of malignant cells at secondary sites within a patient's body, accounts for over 90% of cancer-related mortality. Breast cancer is the most common tumor type diagnosed and the leading cause of cancer lethality in women in the United States. It is estimated that 10-16% breast cancer patients will have brain metastasis. Current therapies to treat patients with breast cancer brain metastasis (BCBM) remain palliative. This is largely due to our limited understanding of the fundamental molecular and cellular mechanisms through which BCBM progresses, which represents a critical barrier for the development of efficient therapies for affected breast cancer patients. METHODS: Previous research in BCBM relied on co-culture assays of tumor cells with rodent neural cells or rodent brain slice ex vivo. Given the need to overcome the obstacle for human-relevant host to study cell-cell communication in BCBM, we generated human embryonic stem cell-derived cerebral organoids to co-culture with human breast cancer cell lines. We used MDA-MB-231 and its brain metastatic derivate MDA-MB-231 Br-EGFP, other cell lines of MCF-7, HCC-1806, and SUM159PT. We leveraged this novel 3D co-culture platform to investigate the crosstalk of human breast cancer cells with neural cells in cerebral organoid. RESULTS: We found that MDA-MB-231 and SUM159PT breast cancer cells formed tumor colonies in human cerebral organoids. Moreover, MDA-MB-231 Br-EGFP cells showed increased capacity to invade and expand in human cerebral organoids. CONCLUSIONS: Our co-culture model has demonstrated a remarkable capacity to discern the brain metastatic ability of human breast cancer cells in cerebral organoids. The generation of BCBM-like structures in organoid will facilitate the study of human tumor microenvironment in culture.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Coculture Techniques , Organoids , Humans , Organoids/pathology , Brain Neoplasms/secondary , Brain Neoplasms/pathology , Female , Breast Neoplasms/pathology , Cell Line, Tumor , Brain/pathology , Cell Communication
2.
Cell Stress ; 8: 56-58, 2024.
Article in English | MEDLINE | ID: mdl-38803355

ABSTRACT

Anoikis is a common programmed death for most of detached cells, but cancer cells can obtain anoikis resistance to facilitate their distant metastasis through the circulation system. Researches have indicated that enhanced autophagic flux accounts for the survival of many cancer cells under detached conditions. Targeting ATG4B, the key factor of autophagy progress, can inhibit cancer metastasis in vitro, but ATG4B-deficient mice are susceptible to many serious diseases, which indicates the potential uncontrolled side effects of direct targeting of ATG4B. In our recent research, we confirmed that ATG4B is a novel RNA binding protein in the gastric cancer (GC) cell. It interacts with circSPECC1 which consequently facilitates the liquid-liquid phase separation and ubiquitination of ATG4B. Additionally, the m6A reader ELAVL1 inhibits the expression of circSPECC1 to enhance the expression of ATG4B and anoikis resistance of GC cells. Further, we screened out an FDA-approved compound, lopinavir, to restore circSPECC1 abundance and suppress GC metastasis. In conclusion, our research identified a novel signal pathway (ELAVL1-circSPECC1-ATG4B-autophagy) to facilitate anoikis resistance and metastasis of GC cells and screened out a compound with clinical application potential to block this pathway, providing a novel strategy for the prevention of GC metastasis.

3.
Exp Cell Res ; 439(1): 114094, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38750718

ABSTRACT

Pirarubicin (THP) is a new generation of cell cycle non-specific anthracycline-based anticancer drug. In the clinic, THP and THP combination therapies have been shown to be effective in hepatocellular carcinoma (HCC) patients with transcatheter arterial chemoembolization (TACE) without serious side effects. However, drug resistance limits its therapeutic efficacy. Berberine (BBR), an isoquinoline alkaloid, has been shown to possess antitumour properties against various malignancies. However, the synergistic effect of BBR and THP in the treatment of HCC is unknown. In the present study, we demonstrated for the first time that BBR sensitized HCC cells to THP, including enhancing THP-induced growth inhibition and apoptosis of HCC cells. Moreover, we found that BBR sensitized THP by reducing the expression of autophagy-related 4B (ATG4B). Mechanistically, the inhibition of HIF1α-mediated ATG4B transcription by BBR ultimately led to attenuation of THP-induced cytoprotective autophagy, accompanied by enhanced growth inhibition and apoptosis in THP-treated HCC cells. Tumor-bearing experiments in nude mice showed that the combination treatment with BBR and THP significantly suppressed the growth of HCC xenografts. These results reveal that BBR is able to strengthen the killing effect of THP on HCC cells by repressing the ATG4B-autophagy pathway, which may provide novel insights into the improvement of chemotherapeutic efficacy of THP, and may be conducive to the further clinical application of THP in HCC treatment.


Subject(s)
Apoptosis , Autophagy-Related Proteins , Autophagy , Berberine , Carcinoma, Hepatocellular , Doxorubicin , Liver Neoplasms , Mice, Nude , Berberine/pharmacology , Berberine/analogs & derivatives , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Autophagy/drug effects , Animals , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Mice , Apoptosis/drug effects , Doxorubicin/pharmacology , Doxorubicin/analogs & derivatives , Xenograft Model Antitumor Assays , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Mice, Inbred BALB C , Antineoplastic Agents/pharmacology , Signal Transduction/drug effects , Cysteine Endopeptidases
4.
Cell Stem Cell ; 31(6): 818-833.e11, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38754427

ABSTRACT

The human blood-brain barrier (hBBB) is a highly specialized structure that regulates passage across blood and central nervous system (CNS) compartments. Despite its critical physiological role, there are no reliable in vitro models that can mimic hBBB development and function. Here, we constructed hBBB assembloids from brain and blood vessel organoids derived from human pluripotent stem cells. We validated the acquisition of blood-brain barrier (BBB)-specific molecular, cellular, transcriptomic, and functional characteristics and uncovered an extensive neuro-vascular crosstalk with a spatial pattern within hBBB assembloids. When we used patient-derived hBBB assembloids to model cerebral cavernous malformations (CCMs), we found that these assembloids recapitulated the cavernoma anatomy and BBB breakdown observed in patients. Upon comparison of phenotypes and transcriptome between patient-derived hBBB assembloids and primary human cavernoma tissues, we uncovered CCM-related molecular and cellular alterations. Taken together, we report hBBB assembloids that mimic the core properties of the hBBB and identify a potentially underlying cause of CCMs.


Subject(s)
Blood-Brain Barrier , Hemangioma, Cavernous, Central Nervous System , Organoids , Pluripotent Stem Cells , Humans , Organoids/pathology , Organoids/metabolism , Hemangioma, Cavernous, Central Nervous System/pathology , Hemangioma, Cavernous, Central Nervous System/metabolism , Blood-Brain Barrier/pathology , Blood-Brain Barrier/metabolism , Pluripotent Stem Cells/metabolism , Models, Biological
6.
Mol Biol Rep ; 51(1): 257, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302614

ABSTRACT

Aging leads to the threat of more diseases to the biological anatomical structure and the decline of disease resistance, increasing the incidence and mortality of myocardial ischemia-reperfusion injury (MI/RI). Moreover, MI/RI promotes damage to an aging heart. Notably, 5'-adenosine monophosphate-activated protein kinase (AMPK) regulates cellular energy metabolism, stress response, and protein metabolism, participates in aging-related signaling pathways, and plays an essential role in ischemia-reperfusion (I/R) injury diseases. This study aims to introduce the aging theory, summarize the interaction between aging and MI/RI, and describe the crosstalk of AMPK in aging and MI/RI. We show how AMPK can offer protective effects against age-related stressors, lifestyle factors such as alcohol consumption and smoking, and hypertension. We also review some of the clinical prospects for the development of interventions that harness the effect of AMPK to treat MI/RI and other age-related cardiovascular diseases.


Subject(s)
Myocardial Reperfusion Injury , Humans , Myocardial Reperfusion Injury/drug therapy , AMP-Activated Protein Kinases/metabolism , Heart , Signal Transduction
7.
Brain Sci ; 14(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38391726

ABSTRACT

Animal models have been used to gain pathophysiologic insights into Parkinson's disease (PD) and aid in the translational efforts of interventions with therapeutic potential in human clinical trials. However, no disease-modifying therapy for PD has successfully emerged from model predictions. These translational disappointments warrant a reappraisal of the types of preclinical questions asked of animal models. Besides the limitations of experimental designs, the one-size convergence and oversimplification yielded by a model cannot recapitulate the molecular diversity within and between PD patients. Here, we compare the strengths and pitfalls of different models, review the discrepancies between animal and human data on similar pathologic and molecular mechanisms, assess the potential of organoids as novel modeling tools, and evaluate the types of questions for which models can guide and misguide. We propose that animal models may be of greatest utility in the evaluation of molecular mechanisms, neural pathways, drug toxicity, and safety but can be unreliable or misleading when used to generate pathophysiologic hypotheses or predict therapeutic efficacy for compounds with potential neuroprotective effects in humans. To enhance the translational disease-modification potential, the modeling must reflect the biology not of a diseased population but of subtypes of diseased humans to distinguish What data are relevant and to Whom.

8.
J Clin Invest ; 134(4)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38175724

ABSTRACT

The mechanisms behind a lack of efficient fear extinction in some individuals are unclear. Here, by employing a principal components analysis-based approach, we differentiated the mice into extinction-resistant and susceptible groups. We determined that elevated synapsin 2a (Syn2a) in the infralimbic cortex (IL) to basolateral amygdala (BLA) circuit disrupted presynaptic orchestration, leading to an excitatory/inhibitory imbalance in the BLA region and causing extinction resistance. Overexpression or silencing of Syn2a levels in IL neurons replicated or alleviated behavioral, electrophysiological, and biochemical phenotypes in resistant mice. We further identified that the proline-rich domain H in the C-terminus of Syn2a was indispensable for the interaction with synaptogyrin-3 (Syngr3) and demonstrated that disrupting this interaction restored extinction impairments. Molecular docking revealed that ritonavir, an FDA-approved HIV drug, could disrupt Syn2a-Syngr3 binding and rescue fear extinction behavior in Syn2a-elevated mice. In summary, the aberrant elevation of Syn2a expression and its interaction with Syngr3 at the presynaptic site were crucial in fear extinction resistance, suggesting a potential therapeutic avenue for related disorders.


Subject(s)
Fear , Prefrontal Cortex , Animals , Mice , Extinction, Psychological/physiology , Fear/physiology , Molecular Docking Simulation , Prefrontal Cortex/metabolism , Synapsins/genetics , Synapsins/metabolism , Synaptogyrins/metabolism
9.
Protein Cell ; 15(4): 261-284, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38011644

ABSTRACT

Sporadic or late-onset Alzheimer's disease (LOAD) accounts for more than 95% of Alzheimer's disease (AD) cases without any family history. Although genome-wide association studies have identified associated risk genes and loci for LOAD, numerous studies suggest that many adverse environmental factors, such as social isolation, are associated with an increased risk of dementia. However, the underlying mechanisms of social isolation in AD progression remain elusive. In the current study, we found that 7 days of social isolation could trigger pattern separation impairments and presynaptic abnormalities of the mossy fibre-CA3 circuit in AD mice. We also revealed that social isolation disrupted histone acetylation and resulted in the downregulation of 2 dentate gyrus (DG)-enriched miRNAs, which simultaneously target reticulon 3 (RTN3), an endoplasmic reticulum protein that aggregates in presynaptic regions to disturb the formation of functional mossy fibre boutons (MFBs) by recruiting multiple mitochondrial and vesicle-related proteins. Interestingly, the aggregation of RTN3 also recruits the PP2A B subunits to suppress PP2A activity and induce tau hyperphosphorylation, which, in turn, further elevates RTN3 and forms a vicious cycle. Finally, using an artificial intelligence-assisted molecular docking approach, we determined that senktide, a selective agonist of neurokinin3 receptors (NK3R), could reduce the binding of RTN3 with its partners. Moreover, application of senktide in vivo effectively restored DG circuit disorders in socially isolated AD mice. Taken together, our findings not only demonstrate the epigenetic regulatory mechanism underlying mossy fibre synaptic disorders orchestrated by social isolation and tau pathology but also reveal a novel potential therapeutic strategy for AD.


Subject(s)
Alzheimer Disease , Peptide Fragments , Substance P/analogs & derivatives , Mice , Animals , Alzheimer Disease/metabolism , Artificial Intelligence , Genome-Wide Association Study , Molecular Docking Simulation , Memory Disorders/metabolism
10.
Article in English | MEDLINE | ID: mdl-38083581

ABSTRACT

This paper reports a three-dimensional microfluidic device with an array of vertical channels to enable regulated, continuous, vertical flows to emulate the environment for in vitro culturing of brain and blood vessel organoids. This is expected to ultimately lead to in vitro reconstruction of the blood-brain barrier that is of high interest to studies on mental illness mechanisms and drug delivery to the brain. Twelve vertical microfluidic channels, each with 300 µm diameter and 5 mm height, were formed in the high-permeability agar gel surrounding the organoid to realize the vertical circulation flows and to allow lateral diffusion flows. The combined vertical flow rate of all channels ranges from 2.1 to 6.8 mL/min under different control parameters. A 30-day-old human blood vessel organoid was planted into the device for initial culturing and flow function tests. The result indicates that the organoid was properly activated with effective flow generation in the culturing site of the device.


Subject(s)
Blood-Brain Barrier , Microfluidics , Humans , Diffusion , Brain , Lab-On-A-Chip Devices
11.
Lasers Med Sci ; 38(1): 232, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37819407

ABSTRACT

This study aimed to investigate the effect of Low-Level Laser Therapy (LLLT) on human Periodontal Ligament Cells (hPDLCs) under tension stress. Primary hPDLCs were obtained using the tissue culture method, and P3 cells were utilized for the subsequent experiments. The study comprised four groups: a blank control group (Group B), a laser irradiation group (Group L), a tension stress group (Group T), and a laser + tension stress group (Group LT). Mechanical loading was applied using an in-vitro cell stress loading device at a frequency of 0.5 Hz and deformation of 2% for two hours per day for two days. Laser irradiation at 808 nm GaAlAs laser was administered 1 h after force loading. Cell samples were collected after the experiment. Bone and fiber remodeling factors were analyzed using PCR and Western blot. Flow cytometry was employed to assess the cell cycle, while ROS and Ca2+ levels were measured using a multifunctional enzyme labeling instrument. The results revealed that laser intervention under tension stress inhibited the expression of osteogenic differentiation factors, promoted the expression of osteoclast differentiation factors, and significantly increased the production of collagen factors, MMPs, and TIMPs. The LT group exhibited the most active cell cycle (P < 0.05). LLLT not only enhanced Ca2+ expression in hPDLCs under tension stress, but also stimulated the production of ROS. Overall, our findings demonstrate that LLLT effectively accelerated the proliferation of hPDLCs and the remodeling of periodontal tissue, possibly through the regulation of ROS and Ca2+ levels in hPDLCs.


Subject(s)
Osteogenesis , Periodontal Ligament , Humans , Cells, Cultured , Reactive Oxygen Species/metabolism , Lasers , Cell Differentiation
12.
Healthcare (Basel) ; 11(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37685434

ABSTRACT

The COVID-19 pandemic has led to a global health crisis with significant morbidity, mortality, and socioeconomic disruptions. Understanding and predicting the dynamics of COVID-19 are crucial for public health interventions, resource allocation, and policy decisions. By developing accurate models, informed public health strategies can be devised, resource allocation can be optimized, and virus transmission can be reduced. Various mathematical and computational models have been developed to estimate transmission dynamics and forecast the pandemic's trajectories. However, the evolving nature of COVID-19 demands innovative approaches to enhance prediction accuracy. The machine learning technique, particularly the deep neural networks (DNNs), offers promising solutions by leveraging diverse data sources to improve prevalence predictions. In this study, three typical DNNs, including the Long Short-Term Memory (LSTM) network, Physics-informed Neural Network (PINN), and Deep Operator Network (DeepONet), are employed to model and forecast COVID-19 spread. The training and testing data used in this work are the global COVID-19 cases in the year of 2021 from the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. A seven-day moving average as well as the normalization techniques are employed to stabilize the training of deep learning models. We systematically investigate the effect of the number of training data on the predicted accuracy as well as the capability of long-term forecast in each model. Based on the relative L2 errors between the predictions from deep learning models and the reference solutions, the DeepONet, which is capable of learning hidden physics given the training data, outperforms the other two approaches in all test cases, making it a reliable tool for accurate forecasting the dynamics of COVID-19.

13.
Biosens Bioelectron ; 239: 115604, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37607448

ABSTRACT

Two-photon absorbing fluorescent probes have emerged as powerful imaging tools for subcellular-level monitoring of biological substances and processes, offering advantages such as deep light penetration, minimal photodamage, low autofluorescence, and high spatial resolution. However, existing two-photon absorbing probes still face several limitations, such as small two-photon absorption cross-section, poor water solubility, low membrane permeability, and potentially high toxicity. Herein, we report three small-molecule probes, namely MSP-1arm, Lyso-2arm, and Mito-3arm, composed of a pyridinium center (electron-acceptor) and various methoxystyrene "arms" (electron-donor). These probes exhibit excellent fluorescence quantum yield and decent aqueous solubility. Leveraging the inherent intramolecular charge transfer and excitonic coupling effect, these complexes demonstrate excellent two-photon absorption in the near-infrared region. Notably, Lyso-2arm and Mito-3arm exhibit distinct targeting abilities for lysosomes and mitochondria, respectively. In two-photon microscopy experiments, Mito-3arm outperforms a commercial two-photon absorbing dye in 2D monolayer HeLa cells, delivering enhanced resolution, broader NIR light excitation window, and higher signal-to-noise ratio. Moreover, the two-photon bioimaging of 3D human forebrain organoids confirms the successful deep tissue imaging capabilities of both Lyso-2arm and Mito-3arm. Overall, this work presents a rational design strategy in developing competent two-photon-absorbing probes by varying the number of conjugated "arms" for bioimaging applications.


Subject(s)
Biosensing Techniques , Microscopy , Humans , Fluorescent Dyes , HeLa Cells , Cell Membrane Permeability , Mitomycin
14.
Sci Adv ; 9(16): eabq7105, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37083538

ABSTRACT

The neuron-glia cross-talk is critical to brain homeostasis and is particularly affected by neurodegenerative diseases. How neurons manipulate the neuron-astrocyte interaction under pathological conditions, such as hyperphosphorylated tau, a pathological hallmark in Alzheimer's disease (AD), remains elusive. In this study, we identified excessively elevated neuronal expression of adenosine receptor 1 (Adora1 or A1R) in 3×Tg mice, MAPT P301L (rTg4510) mice, patients with AD, and patient-derived neurons. The up-regulation of A1R was found to be tau pathology dependent and posttranscriptionally regulated by Mef2c via miR-133a-3p. Rebuilding the miR-133a-3p/A1R signal effectively rescued synaptic and memory impairments in AD mice. Furthermore, neuronal A1R promoted the release of lipocalin 2 (Lcn2) and resulted in astrocyte activation. Last, silencing neuronal Lcn2 in AD mice ameliorated astrocyte activation and restored synaptic plasticity and learning/memory. Our findings reveal that the tau pathology remodels neuron-glial cross-talk and promotes neurodegenerative progression. Approaches targeting A1R and modulating this signaling pathway might be a potential therapeutic strategy for AD.


Subject(s)
Alzheimer Disease , MicroRNAs , Animals , Mice , Alzheimer Disease/metabolism , Astrocytes/metabolism , Disease Models, Animal , Mice, Transgenic , MicroRNAs/metabolism , Neurons/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Humans
15.
Chemosphere ; 327: 138528, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36990363

ABSTRACT

In the development and production process of domestic and foreign oil fields, large amounts of oil-bearing wastewater with complex compositions containing toxic and harmful pollutants are generated. These oil-bearing wastewaters will cause serious environmental pollution if they are not effectively treated before discharge. Among these wastewaters, the oily sewage produced in the process of oilfield exploitation has the largest content of oil-water emulsion. In order to solve the problem of oil-water separation of oily sewage, the paper summarizes the research of many scholars in many aspects, such as the use of physical and chemical methods such as air flotation and flocculation, or the use of mechanical methods such as centrifuges and oil booms for sewage treatment. Comprehensive analysis shows that among these oil-water separation methods, membrane separation technology has higher separation efficiency in the separation of general oil-water emulsions than other methods and also exhibits a better separation effect for stable emulsions, which has a broader application prospect for future developments. To present the characteristics of different types of membranes more intuitively, this paper describes the applicable conditions and characteristics of various types of membranes in detail, summarizes the shortcomings of existing membrane separation technologies, and offers prospects for future research directions.


Subject(s)
Sewage , Wastewater , Oils/chemistry , Oil and Gas Fields , Emulsions/chemistry , Water/chemistry
16.
Development ; 149(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36440629
17.
Comput Methods Programs Biomed ; 226: 107142, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36156441

ABSTRACT

BACKGROUND AND OBJECTIVE: During orthodontic treatment, the figure-of-eight ligature and the physiological occlusion play an important role in providing anchorage effects. However, their effects on reaction forces of tooth and stress state in periodontal ligament (PDL) have not been quantitatively evaluated yet. In this study, we presented a finite element analysis process for simulating posterior molar ligature and direct occlusion during orthodontics in order to quantitatively assess their anchorage effects. METHODS: A high precision 3D biomechanical model containing upper and lower teeth, PDL, brackets and archwire was generated from the images of computed tomographic scan and sophisticated modelling procedures. The orthodontic treatment of closing the extraction gap was simulated via the finite element method to evaluate the biomechanical response of the molars under the conditions with or without ligation. The simulations were divided into experimental and control groups. In the experimental group, orthodontic force of 1 N was first applied, then direct occlusal forces of 3 and 10 N were applied on each opposite tooth. While in the control group, occlusal forces were applied without orthodontic treatment. The tooth displacement, the stress state in the PDL and the directions of the resultant forces on each tooth were evaluated. RESULTS: In the case of molars ligated, the maximum hydrostatic stress in the molars' PDL decreases by 60%. When an initial tooth displacement of several microns occurs in response to an orthodontic force, the direction of the occlusal force changes simultaneously. Even a moderate occlusal force (3 N per tooth) can almost completely offset the mesial forces on the maxillary teeth, thus to provide effective anchorage effect for the orthodontics. CONCLUSIONS: The proposed method is effective for simulating ligation and direct occlusion. Figure-of-eight ligature can effectively disperse orthodontic forces on the posterior teeth, while a good original occlusal relationship provides considerable anchorage effects in orthodontics.


Subject(s)
Tooth Movement Techniques , Tooth , Finite Element Analysis , Tooth Movement Techniques/methods , Molar/diagnostic imaging , Molar/surgery , Molar/physiology , Periodontal Ligament/diagnostic imaging , Biomechanical Phenomena , Stress, Mechanical
18.
Aging Dis ; 13(3): 852-867, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35656114

ABSTRACT

Vascular age-related diseases describe a group of age-related chronic diseases that result in a considerable healthcare burden to society. Vascular aging includes structural changes and dysfunctions of endothelial cells (ECs) and smooth muscle cells (SMCs) in blood vessels. Compared with conventional treatment for vascular age-related diseases, stem cell (SC) therapy elicits better anti-aging effects viathe inhibition/delay ECs and SMCs from entering senescence. Exosomal noncoding RNA (ncRNAs) in vascular aging and stem cell-derived exosomal microRNAs (SCEV-miRNAs), especially in mesenchymal stem cells, have an important role in the development of age-related diseases. This review summarizes SCEV-miRNAs of diverse origins that may play a vital role in treating subclinical and clinical stages of vascular age-related disorders. We further explored possible age-related pathways and molecular targets of SCEV-miRNA, which are associated with dysfunctions of ECs and SMCs in the senescent stage. Moreover, the perspectives and difficulties of SCEV-miRNA clinical translation are discussed. This review aims to provide greater understanding of the biology of vascular aging and to identify critical therapeutic targets for SCEV-miRNAs. Though still in its infancy, the potential value of SCEV-miRNAs for vascular age-related diseases is clear.

19.
Photobiomodul Photomed Laser Surg ; 39(10): 642-653, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34662524

ABSTRACT

Objective: The aim of this network meta-analysis (NMA) was to explore the optimal energy density (ED) for relief of orthodontic-related pain by photobiomodulation therapy. Background: Orthodontic treatment corrects the deformity of teeth, dental arch, jaw, and face using various orthodontic devices under the action of biomechanics. Materials and methods: A computerized literature search was conducted within the MEDLINE, EMBASE, Scopus, Cochrane Library, Web of Science, CNKI, Wanfang, VIP, and CBM databases to identify randomized controlled trials (RCTs) that used photobiomodulation therapy to relieve pain during orthodontic treatment. Particular inclusion and exclusion criteria were connected to recognize relevant articles. The information was extricated autonomously by two reviewers, and a quality assessment was carried out by utilizing the Cochrane Collaboration "risk of bias" tool. The RevMan 5.4 software and STATA 15.0 were utilized for data analysis. Also, the NMA was performed with mvmeta commands in Stata (StataCorp, TX). Results: Of the 1024 recognized articles, 21 RCTs were at long last included. Within the risk-of-bias assessments, 2 studies displayed a high risk, 17 an unclear risk, and 2 a low risk. The global and local inconsistency of the NMA in 1 and 2 days was not significant; however, the NMA in 3 days showed a significant inconsistency. Laser with lower ED (0-10 J/cm2) appeared to be the most noteworthy possibility to become the optimal intervention, and it also had the highest mean rank in the rankogram and the biggest value of surface under the cumulative ranking in all three NMA structures. Conclusions: On account of the limited evidence of included trials, laser with lower ED (0-10 J/cm2) appeared to be more valid than the remaining treatment modalities (laser with higher ED, placebo, and control) for pain reduction in 1, 2, and 3 days after orthodontic procedures were applied. In the future, more high-quality research with consistency in research design is needed for further evaluation.


Subject(s)
Low-Level Light Therapy , Humans , Network Meta-Analysis , Pain
20.
Photobiomodul Photomed Laser Surg ; 39(8): 504-517, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34328796

ABSTRACT

Objective: To assess the viability of photobiomodulation therapy (PBMT) in decreasing orthodontic-related pain after different orthodontic procedures. Methods: A computerized literature search was conducted within the MEDLINE, EMBASE, Scopus, Cochrane Library, Web of Science, CNKI, WanFang, VIP, and CBM databases to identify randomized controlled trials (RCTs), which used PBMT to relieve pain during orthodontic treatment. Particular inclusion and exclusion criteria were connected to recognize relevant articles. The information was extricated autonomously by two reviewers, and a quality assessment was carried out by utilizing the Cochrane Collaboration "risk of bias" tool. Meta-analysis was conducted with fixed- or random-effects models as suitable. Statistical heterogeneity was also examined. The RevMan 5.4 software was utilized for data analysis. Results: Of 1024 recognized articles, 25 RCT were at long last included. Within the risk-of-bias assessments, 1 study displayed a high risk, 22 an unclear risk, and 2 a low risk. The meta-analysis appeared that in patients treated with photobiomodulation (PBM) versus control there was a distinction in support of PBMT in placement of elastomeric separators, canine retraction, and archwire placement during 1 week. Conclusions: PBMT demonstrated to be effective in advancing a reduction pain after elastomeric separators placement, canine retraction, and archwire placement within 1 week. In the future, more high-quality research with consistency in research design is needed for further evaluation.


Subject(s)
Low-Level Light Therapy , Pain , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...