Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Commun Biol ; 5(1): 1051, 2022 10 03.
Article En | MEDLINE | ID: mdl-36192519

Glaucoma is a leading cause of blindness. Current glaucoma medications work by lowering intraocular pressure (IOP), a risk factor for glaucoma, but most treatments do not directly target the pathological changes leading to increased IOP, which can manifest as medication resistance as disease progresses. To identify physiological modulators of IOP, we performed genome- and exome-wide association analysis in >129,000 individuals with IOP measurements and extended these findings to an analysis of glaucoma risk. We report the identification and functional characterization of rare coding variants (including loss-of-function variants) in ANGPTL7 associated with reduction in IOP and glaucoma protection. We validated the human genetics findings in mice by establishing that Angptl7 knockout mice have lower (~2 mmHg) basal IOP compared to wild-type, with a trend towards lower IOP also in heterozygotes. Conversely, increasing murine Angptl7 levels via injection into mouse eyes increases the IOP. We also show that acute Angptl7 silencing in adult mice lowers the IOP (~2-4 mmHg), reproducing the observations in knockout mice. Collectively, our data suggest that ANGPTL7 is important for IOP homeostasis and is amenable to therapeutic modulation to help maintain a healthy IOP that can prevent onset or slow the progression of glaucoma.


Glaucoma , Intraocular Pressure , Adult , Angiopoietin-Like Protein 7 , Angiopoietin-like Proteins/genetics , Animals , Blindness , Glaucoma/drug therapy , Glaucoma/genetics , Humans , Mice , Mice, Knockout
2.
Commun Biol ; 5(1): 540, 2022 06 03.
Article En | MEDLINE | ID: mdl-35661827

To better understand the genetics of hearing loss, we performed a genome-wide association meta-analysis with 125,749 cases and 469,497 controls across five cohorts. We identified 53/c loci affecting hearing loss risk, including common coding variants in COL9A3 and TMPRSS3. Through exome sequencing of 108,415 cases and 329,581 controls, we observed rare coding associations with 11 Mendelian hearing loss genes, including additive effects in known hearing loss genes GJB2 (Gly12fs; odds ratio [OR] = 1.21, P = 4.2 × 10-11) and SLC26A5 (gene burden; OR = 1.96, P = 2.8 × 10-17). We also identified hearing loss associations with rare coding variants in FSCN2 (OR = 1.14, P = 1.9 × 10-15) and KLHDC7B (OR = 2.14, P = 5.2 × 10-30). Our results suggest a shared etiology between Mendelian and common hearing loss in adults. This work illustrates the potential of large-scale exome sequencing to elucidate the genetic architecture of common disorders where both common and rare variation contribute to risk.


Genome-Wide Association Study , Hearing Loss , Exome/genetics , Genetic Variation , Genome-Wide Association Study/methods , Hearing Loss/genetics , Humans , Membrane Proteins/genetics , Neoplasm Proteins/genetics , Serine Endopeptidases/genetics , Exome Sequencing
3.
Nat Genet ; 54(4): 382-392, 2022 04.
Article En | MEDLINE | ID: mdl-35241825

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters human host cells via angiotensin-converting enzyme 2 (ACE2) and causes coronavirus disease 2019 (COVID-19). Here, through a genome-wide association study, we identify a variant (rs190509934, minor allele frequency 0.2-2%) that downregulates ACE2 expression by 37% (P = 2.7 × 10-8) and reduces the risk of SARS-CoV-2 infection by 40% (odds ratio = 0.60, P = 4.5 × 10-13), providing human genetic evidence that ACE2 expression levels influence COVID-19 risk. We also replicate the associations of six previously reported risk variants, of which four were further associated with worse outcomes in individuals infected with the virus (in/near LZTFL1, MHC, DPP9 and IFNAR2). Lastly, we show that common variants define a risk score that is strongly associated with severe disease among cases and modestly improves the prediction of disease severity relative to demographic and clinical factors alone.


COVID-19 , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Genome-Wide Association Study , Humans , Risk Factors , SARS-CoV-2/genetics
4.
PeerJ ; 9: e12205, 2021.
Article En | MEDLINE | ID: mdl-34692250

The eastern oyster, Crassostrea virginica, is divided into four populations along the western North Atlantic, however, the only published mitochondrial genome sequence was assembled using one individual in Delaware. This study aimed to (1) assemble C. virginica mitochondrial genomes from Texas with pooled restriction-site-associated DNA sequencing (ezRAD), (2) evaluate the validity of the mitochondrial genome assemblies including comparison with Sanger sequencing data, and (3) evaluate genetic differentiation both between the Delaware and Texas genomes, as well as among three bays in Texas. The pooled-genome-assembled-genomes (PAGs) from Texas exhibited several characteristics indicating that they were valid, including elevated nucleotide diversity in non-coding and the third position of codons, placement as the sister haplotype of the genome from Delaware in a phylogenetic reconstruction of Crassostrea mitochondrial genomes, and a lack of genetic structure in the ND4 gene among the three Texas bays as was found with Sanger amplicons in samples from the same bays several years prior. In the comparison between the Delaware and Texas genome, 27 of 38 coding regions exhibited variability between the two populations, which were differentiated by 273 mutations, versus 1-13 mutations among the Texas samples. Using the full PAGs, there was no additional evidence for population structure among the three Texas bays. While population genetics is rapidly moving towards larger high-density datasets, studies of mitochondrial DNA (and genomes) can be particularly useful for comparing historic data prior to the modern era of genomics. As such, being able to reliably compile mitochondrial genomes from genomic data can improve the ability to compare results across studies.

5.
Nature ; 599(7886): 628-634, 2021 11.
Article En | MEDLINE | ID: mdl-34662886

A major goal in human genetics is to use natural variation to understand the phenotypic consequences of altering each protein-coding gene in the genome. Here we used exome sequencing1 to explore protein-altering variants and their consequences in 454,787 participants in the UK Biobank study2. We identified 12 million coding variants, including around 1 million loss-of-function and around 1.8 million deleterious missense variants. When these were tested for association with 3,994 health-related traits, we found 564 genes with trait associations at P ≤ 2.18 × 10-11. Rare variant associations were enriched in loci from genome-wide association studies (GWAS), but most (91%) were independent of common variant signals. We discovered several risk-increasing associations with traits related to liver disease, eye disease and cancer, among others, as well as risk-lowering associations for hypertension (SLC9A3R2), diabetes (MAP3K15, FAM234A) and asthma (SLC27A3). Six genes were associated with brain imaging phenotypes, including two involved in neural development (GBE1, PLD1). Of the signals available and powered for replication in an independent cohort, 81% were confirmed; furthermore, association signals were generally consistent across individuals of European, Asian and African ancestry. We illustrate the ability of exome sequencing to identify gene-trait associations, elucidate gene function and pinpoint effector genes that underlie GWAS signals at scale.


Biological Specimen Banks , Databases, Genetic , Exome Sequencing , Exome/genetics , Africa/ethnology , Asia/ethnology , Asthma/genetics , Diabetes Mellitus/genetics , Europe/ethnology , Eye Diseases/genetics , Female , Genetic Predisposition to Disease/genetics , Genetic Variation , Genome-Wide Association Study , Humans , Hypertension/genetics , Liver Diseases/genetics , Male , Mutation , Neoplasms/genetics , Quantitative Trait, Heritable , United Kingdom
6.
Am J Hum Genet ; 108(7): 1350-1355, 2021 07 01.
Article En | MEDLINE | ID: mdl-34115965

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a respiratory illness that can result in hospitalization or death. We used exome sequence data to investigate associations between rare genetic variants and seven COVID-19 outcomes in 586,157 individuals, including 20,952 with COVID-19. After accounting for multiple testing, we did not identify any clear associations with rare variants either exome wide or when specifically focusing on (1) 13 interferon pathway genes in which rare deleterious variants have been reported in individuals with severe COVID-19, (2) 281 genes located in susceptibility loci identified by the COVID-19 Host Genetics Initiative, or (3) 32 additional genes of immunologic relevance and/or therapeutic potential. Our analyses indicate there are no significant associations with rare protein-coding variants with detectable effect sizes at our current sample sizes. Analyses will be updated as additional data become available, and results are publicly available through the Regeneron Genetics Center COVID-19 Results Browser.


COVID-19/diagnosis , COVID-19/genetics , Exome Sequencing , Exome/genetics , Genetic Predisposition to Disease , Hospitalization/statistics & numerical data , COVID-19/immunology , COVID-19/therapy , Female , Humans , Interferons/genetics , Male , Prognosis , SARS-CoV-2 , Sample Size
7.
PLoS One ; 11(4): e0153381, 2016.
Article En | MEDLINE | ID: mdl-27119659

The phenomenon of chaotic genetic patchiness is a pattern commonly seen in marine organisms, particularly those with demersal adults and pelagic larvae. This pattern is usually associated with sweepstakes recruitment and variable reproductive success. Here we investigate the biological underpinnings of this pattern in a species of marine goby Coryphopterus personatus. We find that populations of this species show tell-tale signs of chaotic genetic patchiness including: small, but significant, differences in genetic structure over short distances; a non-equilibrium or "chaotic" pattern of differentiation among locations in space; and within locus, within population deviations from the expectations of Hardy-Weinberg equilibrium (HWE). We show that despite having a pelagic larval stage, and a wide distribution across Caribbean coral reefs, this species forms groups of highly related individuals at small spatial scales (<10 metres). These spatially clustered family groups cause the observed deviations from HWE and local population differentiation, a finding that is rarely demonstrated, but could be more common than previously thought.


Fishes/genetics , Genetic Variation/genetics , Microsatellite Repeats/genetics , Animals , Caribbean Region , Coral Reefs , Genetics, Population/methods , Larva/genetics , Perciformes/genetics , Reproduction/genetics
8.
Bone ; 50(1): 189-99, 2012 Jan.
Article En | MEDLINE | ID: mdl-22036911

Bone morphogenetic proteins (BMPs) are growth factors that initiate differentiation of bone marrow stromal cells to osteoblasts and adipocytes, yet the mechanism that decides which lineage the cell will follow is unknown. BMP2 is linked to the development of osteoporosis and variants of BMP2 gene have been reported to increase the development of osteoporosis. Intracellular signaling is transduced by BMP receptors (BMPRs) of type I and type II that are serine/threonine kinase receptors. The BMP type I a receptor (BMPRIa) is linked to osteogenesis and bone mineral density (BMD). BMPRs are localized to caveolae enriched with Caveolin1 alpha/beta and Caveolin beta isoforms to facilitate signaling. BMP2 binding to caveolae was recently found to be crucial for the initiation of the Smad signaling pathway. Here we determined the role of BMP receptor localization within caveolae isoforms and aggregation of caveolae as well as BMPRIa in bone marrow stromal cells (BMSCs) on bone mineral density using the B6.C3H-6T as a model system. The B6.C3H-6T is a congenic mouse with decreased bone mineral density (BMD) with increased marrow adipocytes and decreased osteoprogenitor proliferation. C57BL/6J mice served as controls since only a segment of Chr6 from the C3H/HeJ mouse was backcrossed to a C57BL/6J background. Family of image correlation spectroscopy was used to analyze receptor cluster density and co-localization of BMPRIa and caveolae. It was previously shown that BMP2 stimulation results in an aggregation of caveolae and BMPRIa. Additionally, BMSCs isolated from the B6.C3H-6T mice showed a dispersion of caveolae domains compared to C57BL/6J. The aggregation of BMPRIa that is necessary for signaling to occur was inhibited in BMSCs isolated from B6.C3H-6T. Additionally, we analyzed the co-localization of BMPRIa with caveolin-1 isoforms. There was increased percentage of BMPRIa co-localization with caveolae compared to C57BL/6J. BMP2 stimulation had no effect on the colocalization of BMPRIa with caveolin-1. Disrupting caveolae initiated Smad signaling in the isolated BMSCs from B6.C3H-6T. These data suggest that in congenic 6T mice BMP receptors aggregation is inhibited causing an inhibition of signaling and reduced bone mass.


Bone Density , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone and Bones/metabolism , Cell Membrane/metabolism , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/physiology , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Bone and Bones/cytology , Calcification, Physiologic , Caveolae/chemistry , Caveolae/metabolism , Caveolins/metabolism , Cell Membrane/ultrastructure , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Congenic , Mice, Inbred C3H , Mice, Inbred C57BL , Osteoporosis/physiopathology , Protein Isoforms/metabolism , Signal Transduction/physiology , Smad Proteins/metabolism , Stromal Cells/cytology , Stromal Cells/physiology
9.
Bone ; 49(5): 944-54, 2011 Nov.
Article En | MEDLINE | ID: mdl-21763800

Approximately 7.9 million fractures occur annually in the United States with 5-10% of these resulting in delayed or impaired healing. Nearly half of the trauma cost of $56 billion per year is used for the treatment of fractures. More importantly, fracture results in a substantial reduction in the quality of life. New approaches and therapies are needed to enhance fracture healing. Only a limited number of treatments are available including bone grafting, allogeneic and autologous bone marrow transplantation, and bone morphogenetic protein (BMP). We previously identified Protein Kinase CK2 to interact with BMP receptor type Ia (BMPRIa) and as a key protein for signal activation. Peptides approximately 30 AA were developed that mimicked BMP2 action in vitro by blocking this interaction. In this paper we extended our studies to investigate if the most promising peptide could induce in vivo bone formation in mice and to elucidate this mechanism of action. The CK2 blocking peptide activated the Wnt pathway. To identify the optimal peptide concentration and peptide concentration curves for mineralization studies were performed. We designed BMPRIa mutants with a point mutation in the CK2 phosphorylation site to establish a specific effect. Mineralization was initiated with the overexpression of the BMPRIa mutants indicating CK2 is a negative regulatory protein for osteoblast differentiation. Osteoclast differentiation and activity was decreased with the CK2 blocking peptide. Further, subcutaneous calvarial bone injections of a CK2 blocking peptide increased bone area, areal bone mineral density, and bone growth. These results indicate CK2 is crucial for osteoblast differentiation and could be a target for future therapeutics of fracture healing.


Bone Morphogenetic Protein Receptors, Type I/metabolism , Casein Kinase II/physiology , Osteogenesis/physiology , Absorptiometry, Photon , Animals , Bone Density , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein Receptors, Type I/genetics , Casein Kinase II/metabolism , Cell Line , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , NFATC Transcription Factors/metabolism , Point Mutation , Recombinant Proteins/metabolism , Signal Transduction , Wnt Signaling Pathway
...