Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 123(5): 2094-102, 2013 May.
Article in English | MEDLINE | ID: mdl-23543054

ABSTRACT

Myopia is by far the most common human eye disorder that is known to have a clear, albeit poorly defined, heritable component. In this study, we describe an autosomal-recessive syndrome characterized by high myopia and sensorineural deafness. Our molecular investigation in 3 families led to the identification of 3 homozygous nonsense mutations (p.R181X, p.S297X, and p.Q414X) in SLIT and NTRK-like family, member 6 (SLITRK6), a leucine-rich repeat domain transmembrane protein. All 3 mutant SLITRK6 proteins displayed defective cell surface localization. High-resolution MRI of WT and Slitrk6-deficient mouse eyes revealed axial length increase in the mutant (the endophenotype of myopia). Additionally, mutant mice exhibited auditory function deficits that mirrored the human phenotype. Histological investigation of WT and Slitrk6-deficient mouse retinas in postnatal development indicated a delay in synaptogenesis in Slitrk6-deficient animals. Taken together, our results showed that SLITRK6 plays a crucial role in the development of normal hearing as well as vision in humans and in mice and that its disruption leads to a syndrome characterized by severe myopia and deafness.


Subject(s)
Hearing Loss, Sensorineural/genetics , Membrane Proteins/genetics , Myopia/genetics , Adolescent , Adult , Animals , Child , Codon, Nonsense , Female , Hearing , Humans , Infant , Male , Mice , Mice, Knockout , Middle Aged , Mutation , Pedigree , Phenotype , Protein Structure, Tertiary , Young Adult
2.
Am J Hum Genet ; 87(5): 655-60, 2010 Nov 12.
Article in English | MEDLINE | ID: mdl-20970105

ABSTRACT

In human mitochondria, polyadenylation of mRNA, undertaken by the nuclear-encoded mitochondrial poly(A) RNA polymerase, is essential for maintaining mitochondrial gene expression. Our molecular investigation of an autosomal-recessive spastic ataxia with optic atrophy, present among the Old Order Amish, identified a mutation of MTPAP associated with the disease phenotype. When subjected to poly(A) tail-length assays, mitochondrial mRNAs from affected individuals were shown to have severely truncated poly(A) tails. Although defective mitochondrial DNA maintenance underlies a well-described group of clinical disorders, our findings reveal a defect of mitochondrial mRNA maturation associated with human disease and imply that this disease mechanism should be considered in other complex neurodegenerative disorders.


Subject(s)
Cerebellar Ataxia/genetics , DNA-Directed RNA Polymerases/genetics , Genes, Mitochondrial , Mitochondrial Proteins/genetics , Paraparesis, Spastic/genetics , RNA, Messenger , Adolescent , Adult , Amino Acid Sequence , Base Sequence , Child , Child, Preschool , Female , Humans , Male , Molecular Sequence Data , Mutation , Optic Atrophy/genetics , Pedigree , RNA, Mitochondrial
3.
Nat Genet ; 36(11): 1225-9, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15502825

ABSTRACT

We identified an autosomal recessive infantile-onset symptomatic epilepsy syndrome associated with developmental stagnation and blindness. Assuming a founder effect in a large Old Order Amish pedigree, we carried out a genome-wide screen for linkage and identified a single region of homozygosity on chromosome 2p12-p11.2 spanning 5.1 cM (maximum lod score of 6.84). We sequenced genes in the region and identified a nonsense mutation in SIAT9, which is predicted to result in the premature termination of the GM3 synthase enzyme (also called lactosylceramide alpha-2,3 sialyltransferase). GM3 synthase is a member of the sialyltransferase family and catalyzes the initial step in the biosynthesis of most complex gangliosides from lactosylceramide. Biochemical analysis of plasma glycosphingolipids confirmed that affected individuals lack GM3 synthase activity, as marked by a complete lack of GM3 ganglioside and its biosynthetic derivatives and an increase in lactosylceramide and its alternative derivatives. Although the relationship between defects in ganglioside catabolism and a range of lysosomal storage diseases is well documented, this is the first report, to our knowledge, of a disruption of ganglioside biosynthesis associated with human disease.


Subject(s)
Epilepsy/genetics , Sialyltransferases/genetics , Blindness , Chromosomes, Human, Pair 2 , Codon, Nonsense , Developmental Disabilities/genetics , Female , Founder Effect , G(M3) Ganglioside/blood , Genes, Recessive , Glycosphingolipids/blood , Humans , Infant , Infant, Newborn , Male , Pedigree , Sialyltransferases/deficiency , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...