Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Food Res Int ; 180: 114087, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395556

ABSTRACT

Exposure to mycotoxins through food is a major health concern, especially for youngsters. This study performed a preliminary investigation on children's exposure to dietary mycotoxins in Ribeirão Preto, Brazil. Sampling procedures were conducted between August and December 2022, to collect foods (N = 213) available for consumption in the households of children (N = 67), including preschoolers (aged 3-6 years, n = 21), schoolers (aged 7-10 years, n = 15), and adolescents (aged 11-17 years, n = 31) cared in the Vila Lobato Community Social Medical Center of Ribeirão Preto. Ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) was used to determine concentrations of the mycotoxins in foods. Mycotoxins measured in all foods comprised aflatoxins (AFs), fumonisins (FBs), zearalenone (ZEN), T-2 toxin, deoxynivalenol (DON) and ochratoxin A (OTA). Higher incidence and levels were found for FBs, ZEN, and DON in several commonly consumed foods. Furthermore, 32.86 % foods had two to four quantifiable mycotoxins in various combinations. The mean estimated daily intake (EDI) values were lower than the tolerable daily intake (TDI) for AFs, FBs, and ZEN, but higher than the TDI (1.0 µg/kg bw/day) for DON, hence indicating a health risk for all children age groups. Preschoolers and adolescents were exposed to DON through wheat products (EDIs: 2.696 ± 7.372 and 1.484 ± 2.395 µg/kg body weight (bw)/day, respectively), while schoolers were exposed through wheat products (EDI: 1.595 ± 1.748 µg/kg bw/day) and rice (EDI: 1.391 ± 1.876 µg/kg bw/day). The results indicate that wheat-based foods and rice may be risky to children, implying the need for stringent measures to avoid DON contamination in these products.


Subject(s)
Aflatoxins , Mycotoxins , Zearalenone , Child , Adolescent , Humans , Mycotoxins/analysis , Pilot Projects , Chromatography, Liquid/methods , Brazil , Food Contamination/analysis , Tandem Mass Spectrometry/methods , Zearalenone/analysis , Aflatoxins/analysis , Triticum
2.
Sci Rep ; 12(1): 17624, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271238

ABSTRACT

This research characterizes key metabolites in the leaf from Citronella gongonha Martius (Mart.) Howard (Cardiopteridaceae). All metabolites were assessed in intact leaf tissue by proton (1H) high-resolution magic angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy integrated with the principal component analysis (PCA) to depict molecular association with the seasonal change. The major 'known unknown' metabolites detected in 1H HR-MAS NMR were derivatives of flavonoid, polyphenolic and monoterpenoid compounds such as kaempferol-3-O-dihexoside, caffeoyl glucoside (2), 3-O-caffeoylquinic acid (3), 5-O-caffeoylquinic acid (4), kingiside (5), 8-epi-kingisidic acid (6), (7α)-7-O-methylmorroniside (7), (7ß)-7-O-methylmorroniside (8) and alpigenoside (9) together with the universally occurring sucrose (10), α-glucoses (11, 12), alanine (13), and fatty (linolenic) acid (14). Several of the major metabolites (1, 2-9) were additionally confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS). In regard with the PCA results, metabolites 1, 2-9 and 14 were influenced by seasonal variation and/or from further (a) biotic environmental conditions. The findings in this work indicate that C. gongonha Mart. is an effective medicinal plant by preserving particularly compounds 2, 3-9 in abundant amounts. Because of close susceptibility with seasonal shift and ecological trends, further longitudinal studies are needed to realize the physiology and mechanism involved in the production of these and new metabolites in this plant under controlled conditions. Also, future studies are recommended to classify different epimers, especially of the phenolics and monoterpenoids in the given plant.


Subject(s)
Cymbopogon , Magnoliopsida , Kaempferols/metabolism , Protons , Chromatography, Liquid , Tandem Mass Spectrometry , Metabolomics/methods , Magnetic Resonance Spectroscopy/methods , Plant Leaves/metabolism , Monoterpenes/analysis , Alanine/metabolism , Sucrose/metabolism , Glucosides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL