Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
STAR Protoc ; 4(1): 101968, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36598854

ABSTRACT

Here, we present an optimized iDISCO+ protocol combining tissue clearing and light sheet microscopy to map the postnatal development of oxytocin and vasopressin neurons in mouse hypothalamus. We describe tissue preparation, immunostaining, clearing, and imaging. We then detail how to process the 3D cell dataset to analyze cell network using a point-based recording procedure that accurately maps neurons in the Allen brain atlas. This protocol can be applied to any neuronal population, in different brain regions and at different developmental stages. For complete details on the use and execution of this protocol, please refer to Soumier et al. (2021).1.


Subject(s)
Oxytocin , Vasopressins , Animals , Mice , Brain/diagnostic imaging , Histological Techniques , Microscopy
2.
iScience ; 25(1): 103655, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35028535

ABSTRACT

Oxytocin (OXT) and arginine vasopressin (AVP), two neuropeptides involved in socio-emotional behaviors have been anatomically defined in the adult brain. Yet their spatial organization during postnatal development is not clearly defined. We built a developmental atlas using 3D imaging of cleared immunolabeled tissue over four early postnatal (P) stages, from birth (P0, P3, P7, P14) to young adulthood (≥P56). Our atlas-based mapping revealed that the number of OXT neurons doubles according to unique temporal dynamics in selective hypothalamic regions, namely, the periventricular and paraventricular nuclei, and in a novel location we named the antero-lateral preoptic. In the paraventricular nucleus, single-cell densities and fluorescence analysis demonstrated selective expansion of OXT cells in the antero-ventral division, whereas the postero-dorsal division contained cells present at birth. No changes were observed for AVP neurons. Our findings show the coexisting of innate and plastic OXT/AVP brain circuits probably triggered by environmental adaptation of the social brain.

SELECTION OF CITATIONS
SEARCH DETAIL