Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Med Chem ; 65(21): 14366-14390, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36261130

ABSTRACT

The branched-chain amino acid transaminases (BCATs) are enzymes that catalyze the first reaction of catabolism of the essential branched-chain amino acids to branched-chain keto acids to form glutamate. They are known to play a key role in different cancer types. Here, we report a new structural class of BCAT1/2 inhibitors, (trifluoromethyl)pyrimidinediones, identified by a high-throughput screening campaign and subsequent optimization guided by a series of X-ray crystal structures. Our potent dual BCAT1/2 inhibitor BAY-069 displays high cellular activity and very good selectivity. Along with a negative control (BAY-771), BAY-069 was donated as a chemical probe to the Structural Genomics Consortium.


Subject(s)
Amino Acids, Branched-Chain , Transaminases , Transaminases/metabolism , Amino Acids, Branched-Chain/metabolism , Keto Acids/metabolism
2.
Sci Rep ; 12(1): 4929, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35322090

ABSTRACT

The ion channel TRPA1 is a promiscuous chemosensor, with reported response to a wide spectrum of noxious electrophilic irritants, as well as cold, heat, and mechanosensation. It is also implicated in the inception of itch and pain and has hence been investigated as a drug target for novel analgesics. The mechanism of electrophilic activation for TRPA1 is therefore of broad interest. TRPA1 structures with the pore in both open and closed states have recently been published as well as covalent binding modes for electrophile agonists. However, the detailed mechanism of coupling between electrophile binding sites and the pore remains speculative. In addition, while two different cysteine residues (C621 and C665) have been identified as critical for electrophile bonding and activation, the bound geometry has only been resolved at C621. Here, we use molecular dynamics simulations of TRPA1 in both pore-open and pore-closed states to explore the allosteric link between the electrophile binding sites and pore stability. Our simulations reveal that an open pore is structurally stable in the presence of open 'pockets' in the C621/C665 region, but rapidly collapses and closes when these pockets are shut. Binding of electrophiles at either C621 or C665 provides stabilisation of the pore-open state, but molecules bound at C665 are shown to be able to rotate in and out of the pocket, allowing for immediate stabilisation of transient open states. Finally, mutual information analysis of trajectories reveals an informational path linking the electrophile binding site pocket to the pore via the voltage-sensing-like domain, giving a detailed insight into the how the pore is stabilized in the open state.


Subject(s)
Molecular Dynamics Simulation , Transient Receptor Potential Channels , Calcium Channels/metabolism , Humans , Irritants , TRPA1 Cation Channel/metabolism , Transient Receptor Potential Channels/metabolism
3.
Methods Mol Biol ; 2114: 207-229, 2020.
Article in English | MEDLINE | ID: mdl-32016896

ABSTRACT

Estimating the range of three-dimensional structures (conformations) that are available to a molecule is a key component of computer-aided drug design. Quantum mechanical simulation offers improved accuracy over forcefield methods, but at a high computational cost. The question is whether this increased cost can be justified in a context in which high-throughput analysis of large numbers of molecules is often key. This chapter discusses the application of quantum mechanics to conformational searching, with a focus on three key challenges: (1) the generation of ensembles that include a good approximation to a molecule's bioactive conformation at as prominent a ranking as possible; (2) rational analysis and modification of a pre-established bioactive conformation in terms of its energetics; and (3) approximation of real solution-phase conformational ensembles in tandem with NMR data. The impact of QM on the high-throughput application (1) is debatable, meaning that for the moment its primary application is still lower-throughput applications such as (2) and (3). The optimal choice of QM method is also discussed. Rigorous benchmarking suggests that DFT methods are only acceptable when used with large basis sets, but a trickle of papers continue to obtain useful results with relatively low-cost methods, leading to a dilemma that the literature has yet to fully resolve.


Subject(s)
Drug Discovery/methods , Pharmaceutical Preparations/chemistry , Computer Simulation , Drug Design , Molecular Conformation , Quantum Theory , Software
4.
J Comput Aided Mol Des ; 32(8): 841-852, 2018 08.
Article in English | MEDLINE | ID: mdl-29987709

ABSTRACT

Quantification of three-dimensional similarity between small molecules is a fundamental tool of rational drug design. However, there are no widely-adopted scoring approaches for comparing whole conformational ensembles between molecules. Such scores would be desirable for scenarios in which properties of a molecule have been measured (e.g. activity against a target) but the relevant three dimensional structure is not known. In this study, a set of three complementary ensemble comparison scores is proposed. These are the maximum similarity between any pair of conformations; the proportion of the whole set of the conformations that are matched to within a threshold 3D similarity score; and the average value over these matched conformations of the molecular shape descriptor 'σ-fct', introduced by Ballester et al. The utility of this scoring set is demonstrated in three case studies. The first is an attempt to discriminate between the conformational behaviours of a series of compounds with varying types of cyclisations and other conformationally-significant modifications; the second is an analysis of the more and less active members of a series of GPR119 agonists plus an analysis of a series of orexin-1 antagonists; and the third case study is an attempt to obtain enrichment of active against inactive compounds for a subset of the DUD·E dataset, by ensemble comparison against an active reference compound.


Subject(s)
Drug Discovery/methods , Models, Molecular , Organic Chemicals/chemistry , Algorithms , Animals , Databases, Chemical , Ligands , Molecular Conformation , Orexin Receptor Antagonists/chemistry , Orexin Receptors/agonists , Rats , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Research Design , Structure-Activity Relationship
5.
J Comput Aided Mol Des ; 31(12): 1073-1083, 2017 12.
Article in English | MEDLINE | ID: mdl-29189937

ABSTRACT

Computational generation of conformational ensembles is key to contemporary drug design. Selecting the members of the ensemble that will approximate the conformation most likely to bind to a desired target (the bioactive conformation) is difficult, given that the potential energy usually used to generate and rank the ensemble is a notoriously poor discriminator between bioactive and non-bioactive conformations. In this study an approach to generating a focused ensemble is proposed in which each conformation is assigned multiple rankings based not just on potential energy but also on solvation energy, hydrophobic or hydrophilic interaction energy, radius of gyration, and on a statistical potential derived from Cambridge Structural Database data. The best ranked structures derived from each system are then assembled into a new ensemble that is shown to be better focused on bioactive conformations. This pluralistic approach is tested on ensembles generated by the Molecular Operating Environment's Low Mode Molecular Dynamics module, and by the Cambridge Crystallographic Data Centre's conformation generator software.


Subject(s)
Computer-Aided Design , Molecular Conformation , Molecular Docking Simulation , Databases, Chemical , Drug Design , Molecular Docking Simulation/methods , Software
6.
J Chem Theory Comput ; 11(4): 1957-69, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-26574397

ABSTRACT

A key step in many approaches to crystal structure prediction (CSP) is the initial generation of large numbers of candidate crystal structures via the exploration of the lattice energy surface. By using a relatively simple lattice energy approximation, this global search step aims to identify, in a computationally tractable manner, a limited number of likely candidate structures for further refinement using more detailed models. This paper presents an effective and efficient approach to modeling the effects of molecular flexibility during this initial global search. Local approximate models (LAMs), constructed via quantum mechanical (QM) calculations, are used to model the conformational energy, molecular geometry, and atomic charge distributions as functions of a subset of the conformational degrees of freedom (e.g., flexible torsion angles). The effectiveness of the new algorithm is demonstrated via its application to the recently studied 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (ROY) molecule and to two molecules, ß-D-glucose and 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione, a Bristol Myers Squibb molecule referenced as BMS-488043. All three molecules present significant challenges due to their high degree of flexibility.


Subject(s)
Algorithms , Glucose/chemistry , Piperazines/chemistry , Indoles , Models, Chemical , Molecular Conformation , Pyruvic Acid , Quantum Theory , Thermodynamics
7.
Phys Chem Chem Phys ; 14(25): 9195-203, 2012 Jul 07.
Article in English | MEDLINE | ID: mdl-22644364

ABSTRACT

Solution and growth effects are in many cases critical in determining which crystal structure (polymorph) a molecule will adopt. Contemporary crystal structure prediction (CSP) rarely address formation and growth in a systematic way, relying instead on bulk thermodynamic stabilities. In this study, it is shown that analysis of simulated solutions of tetrolic acid in combination with calculation of stabilities for nanoscale clusters cut from bulk structures can distinguish between four computationally predicted crystal structures, including the two known forms and two speculative forms, rationalizing the formation of one structure rather than another on grounds other than bulk lattice energies. It is concluded that modelling of both solution-based supramolecular species and nanocrystal stabilities are necessary to explain the selection of one structure over another during crystal formation, and that they are sufficient for the specific case of tetrolic acid.

8.
Acta Crystallogr B ; 67(Pt 6): 535-51, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22101543

ABSTRACT

Following on from the success of the previous crystal structure prediction blind tests (CSP1999, CSP2001, CSP2004 and CSP2007), a fifth such collaborative project (CSP2010) was organized at the Cambridge Crystallographic Data Centre. A range of methodologies was used by the participating groups in order to evaluate the ability of the current computational methods to predict the crystal structures of the six organic molecules chosen as targets for this blind test. The first four targets, two rigid molecules, one semi-flexible molecule and a 1:1 salt, matched the criteria for the targets from CSP2007, while the last two targets belonged to two new challenging categories - a larger, much more flexible molecule and a hydrate with more than one polymorph. Each group submitted three predictions for each target it attempted. There was at least one successful prediction for each target, and two groups were able to successfully predict the structure of the large flexible molecule as their first place submission. The results show that while not as many groups successfully predicted the structures of the three smallest molecules as in CSP2007, there is now evidence that methodologies such as dispersion-corrected density functional theory (DFT-D) are able to reliably do so. The results also highlight the many challenges posed by more complex systems and show that there are still issues to be overcome.


Subject(s)
Crystallography, X-Ray/methods , Organic Chemicals/chemistry , Databases, Factual , Models, Molecular
9.
Phys Chem Chem Phys ; 13(20): 9590-600, 2011 May 28.
Article in English | MEDLINE | ID: mdl-21499611

ABSTRACT

Modelling of disorder in organic crystals is highly desirable since it would allow thermodynamic stabilities and other disorder-sensitive properties to be estimated for such systems. Two disordered organic molecular systems are modeled using a symmetry-adapted ensemble approach, in which the disordered system is treated as an ensemble of the configurations of a supercell with respect to substitution of one disorder component for another. Computation time is kept manageable by performing calculations only on the symmetrically inequivalent configurations. Calculations are presented on a substitutionally disordered system, the dichloro/dibromobenzene solid solution, and on an orientationally disordered system, eniluracil, and the resultant free energies, disorder patterns, and system properties are discussed. The results are found to be in agreement with experiment, when some physically implausible configurations are removed from the ensemble average for eniluracil, highlighting the dangers of a completely automated approach to organic crystal thermodynamics which ignores the barriers to equilibration once the crystal has been formed.

10.
J Chem Theory Comput ; 7(9): 2685-8, 2011 Sep 13.
Article in English | MEDLINE | ID: mdl-26605460

ABSTRACT

The lattice energies of the experimental and several hypothetical crystal structures of the RNA base uracil derivative 5-formyluracil are calculated with a range of methods, based either on the electronic structure of the molecule or the lattice. The explicit modeling of the polarization within the crystal in the model intermolecular potential and the inclusion of an empirical dispersion correction to the periodic density functional energy (DFT-D2) were the only methods able to calculate the energy balance between different conformations, hydrogen bonding, and π-π stacking possibilities sufficiently accurately to give the observed structure as the most stable. Even these two methods underestimated the density of the room temperature structure, showing the need for improvement in the modeling of organic crystal structures.

11.
Phys Chem Chem Phys ; 12(30): 8478-90, 2010 Aug 14.
Article in English | MEDLINE | ID: mdl-20607186

ABSTRACT

Crystal structure prediction for organic molecules requires both the fast assessment of thousands to millions of crystal structures and the greatest possible accuracy in their relative energies. We describe a crystal lattice simulation program, DMACRYS, emphasizing the features that make it suitable for use in crystal structure prediction for pharmaceutical molecules using accurate anisotropic atom-atom model intermolecular potentials based on the theory of intermolecular forces. DMACRYS can optimize the lattice energy of a crystal, calculate the second derivative properties, and reduce the symmetry of the spacegroup to move away from a transition state. The calculated terahertz frequency k = 0 rigid-body lattice modes and elastic tensor can be used to estimate free energies. The program uses a distributed multipole electrostatic model (Q, t = 00,...,44s) for the electrostatic fields, and can use anisotropic atom-atom repulsion models, damped isotropic dispersion up to R(-10), as well as a range of empirically fitted isotropic exp-6 atom-atom models with different definitions of atomic types. A new feature is that an accurate model for the induction energy contribution to the lattice energy has been implemented that uses atomic anisotropic dipole polarizability models (alpha, t = (10,10)...(11c,11s)) to evaluate the changes in the molecular charge density induced by the electrostatic field within the crystal. It is demonstrated, using the four polymorphs of the pharmaceutical carbamazepine C(15)H(12)N(2)O, that whilst reproducing crystal structures is relatively easy, calculating the polymorphic energy differences to the accuracy of a few kJ mol(-1) required for applications is very demanding of assumptions made in the modelling. Thus DMACRYS enables the comparison of both known and hypothetical crystal structures as an aid to the development of pharmaceuticals and other speciality organic materials, and provides a tool to develop the modelling of the intermolecular forces involved in molecular recognition processes.

12.
J Phys Condens Matter ; 21(7): 075503, 2009 Feb 18.
Article in English | MEDLINE | ID: mdl-21817330

ABSTRACT

A theoretical scheme is presented for the entanglement of two-electron spin qubits bound in series within a quasi-one-dimensional mesoscopic structure at a distance beyond their normal range of interaction. A third electron is scattered from them, and full entanglement is achieved upon measurement of a transmitted electron in the correct spin state. Critically, each bound electron is trapped within an individual structure that has at least two spatial states. Two simple examples of such structures are discussed here. One is a 'stub', in which a quantum dot (for example) is coupled to one side of the quasi-one-dimensional structure. The other is a pair of degenerate, coupled quantum dots, with strong interdot Coulomb repulsion, placed within the one-dimensional superstructure. Both of these are shown to allow generation of entanglement with a significant probability of success. In contrast to the results of the authors' previous works, this allows for the generation of entanglement in a series, rather than in a parallel, configuration of the bound electrons with respect to the propagating electron.

13.
Lab Chip ; 4(5): 417-9, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15472723

ABSTRACT

Microfluidic devices for spatially localised heating of microchannel environments were designed, fabricated and tested. The devices are simple to implement, do not require complex manufacturing steps and enable intra-channel temperature control to within +/-0.2 degrees C. Ionic liquids held in co-running channels are Joule heated with an a.c. current. The nature of the devices means that the internal temperature can be directly assessed in a facile manner.


Subject(s)
Ions/chemistry , Microfluidics/instrumentation , Temperature , Equipment Design , Imidazoles/chemistry , Microfluidics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...