Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Med Chem ; 64(21): 15883-15911, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34699202

ABSTRACT

PIP4K2A is an insufficiently studied type II lipid kinase that catalyzes the conversion of phosphatidylinositol-5-phosphate (PI5P) into phosphatidylinositol 4,5-bisphosphate (PI4,5P2). The involvement of PIP4K2A/B in cancer has been suggested, particularly in the context of p53 mutant/null tumors. PIP4K2A/B depletion has been shown to induce tumor growth inhibition, possibly due to hyperactivation of AKT and reactive oxygen species-mediated apoptosis. Herein, we report the identification of the novel potent and highly selective inhibitors BAY-091 and BAY-297 of the kinase PIP4K2A by high-throughput screening and subsequent structure-based optimization. Cellular target engagement of BAY-091 and BAY-297 was demonstrated using cellular thermal shift assay technology. However, inhibition of PIP4K2A with BAY-091 or BAY-297 did not translate into the hypothesized mode of action and antiproliferative activity in p53-deficient tumor cells. Therefore, BAY-091 and BAY-297 serve as valuable chemical probes to study PIP4K2A signaling and its involvement in pathophysiological conditions such as cancer.


Subject(s)
Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Naphthyridines/chemistry , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , High-Throughput Screening Assays , Humans , Mice , Mice, Knockout , Mitochondria/drug effects , Mitochondria/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Structure-Activity Relationship
2.
Cell Rep ; 36(3): 109394, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34289372

ABSTRACT

Novel treatment options for metastatic colorectal cancer (CRC) are urgently needed to improve patient outcome. Here, we screen a library of non-characterized small molecules against a heterogeneous collection of patient-derived CRC spheroids. By prioritizing compounds with inhibitory activity in a subset of-but not all-spheroid cultures, NCT02 is identified as a candidate with minimal risk of non-specific toxicity. Mechanistically, we show that NCT02 acts as molecular glue that induces ubiquitination of cyclin K (CCNK) and proteasomal degradation of CCNK and its complex partner CDK12. Knockout of CCNK or CDK12 decreases proliferation of CRC cells in vitro and tumor growth in vivo. Interestingly, sensitivity to pharmacological CCNK/CDK12 degradation is associated with TP53 deficiency and consensus molecular subtype 4 in vitro and in patient-derived xenografts. We thus demonstrate the efficacy of targeted CCNK/CDK12 degradation for a CRC subset, highlighting the potential of drug-induced proteolysis for difficult-to-treat types of cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/metabolism , Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , Proteolysis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Self Renewal/drug effects , DNA Damage , Female , High-Throughput Screening Assays , Humans , Proteasome Endopeptidase Complex/metabolism , Proteolysis/drug effects , Proteomics , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/drug effects
3.
SLAS Discov ; 26(8): 947-960, 2021 09.
Article in English | MEDLINE | ID: mdl-34154424

ABSTRACT

SMYD3 (SET and MYND domain-containing protein 3) is a protein lysine methyltransferase that was initially described as an H3K4 methyltransferase involved in transcriptional regulation. SMYD3 has been reported to methylate and regulate several nonhistone proteins relevant to cancer, including mitogen-activated protein kinase kinase kinase 2 (MAP3K2), vascular endothelial growth factor receptor 1 (VEGFR1), and the human epidermal growth factor receptor 2 (HER2). In addition, overexpression of SMYD3 has been linked to poor prognosis in certain cancers, suggesting SMYD3 as a potential oncogene and attractive cancer drug target. Here we report the discovery of a novel SMYD3 inhibitor. We performed a thermal shift assay (TSA)-based high-throughput screening (HTS) with 410,000 compounds and identified a novel benzodiazepine-based SMYD3 inhibitor series. Crystal structures revealed that this series binds to the substrate binding site and occupies the hydrophobic lysine binding pocket via an unprecedented hydrogen bonding pattern. Biochemical assays showed substrate competitive behavior. Following optimization and extensive biophysical validation with surface plasmon resonance (SPR) analysis and isothermal titration calorimetry (ITC), we identified BAY-6035, which shows nanomolar potency and selectivity against kinases and other PKMTs. Furthermore, BAY-6035 specifically inhibits methylation of MAP3K2 by SMYD3 in a cellular mechanistic assay with an IC50 <100 nM. Moreover, we describe a congeneric negative control to BAY-6035. In summary, BAY-6035 is a novel selective and potent SMYD3 inhibitor probe that will foster the exploration of the biological role of SMYD3 in diseased and nondiseased tissues.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Discovery/methods , High-Throughput Screening Assays/methods , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/chemistry , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Protein Binding , Small Molecule Libraries , Structure-Activity Relationship
4.
Haematologica ; 106(2): 565-573, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32241846

ABSTRACT

Mutant IDH1 (mIDH1) inhibitors have shown single-agent activity in relapsed/refractory AML, though most patients eventually relapse. We evaluated the efficacy and molecular mechanism of the combination treatment with azacitidine, which is currently the standard of care in older AML patients, and mIDH1 inhibitor BAY1436032. Both compounds were evaluated in vivo as single agents and in combination with sequential (azacitidine, followed by BAY1436032) or simultaneous application in two human IDH1 mutated AML xenograft models. Combination treatment significantly prolonged survival compared to single agent or control treatment (P<.005). The sequential combination treatment depleted leukemia stem cells (LSC) by 470-fold. Interestingly, the simultaneous combination treatment depleted LSCs by 33,150-fold compared to control mice. This strong synergy is mediated through inhibition of MAPK/ERK and RB/E2F signaling. Our data strongly argues for the concurrent application of mIDH1 inhibitors and azacitidine and predicts improved outcome of this regimen in IDH1 mutated AML patients.


Subject(s)
Azacitidine , Leukemia, Myeloid, Acute , Aged , Aniline Compounds , Animals , Benzimidazoles , Humans , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mice
5.
Oncotarget ; 11(8): 801-812, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32166001

ABSTRACT

SLC25A32 is a member of the solute carrier 25 family of mitochondrial transporters. SLC25A32 transports tetrahydrofolate (THF) as well as FAD into mitochondria and regulates mitochondrial one-carbon metabolism and redox balance. While it is known that cancer cells require one-carbon and FAD-dependent mitochondrial metabolism to sustain cell proliferation, the role of SLC25A32 in cancer cell growth remains unexplored. Our results indicate that the SLC25A32 gene is highly amplified in different tumors and that amplification correlates with increased mRNA expression and reduced patients´ survival. siRNA-mediated knock-down and CRISPR-mediated knock-out of SLC25A32 in cancer cells of different origins, resulted in the identification of cell lines sensitive and resistant to SLC25A32 inhibition. Mechanistically, tracing of deuterated serine revealed that SLC25A32 knock-down does not affect the mitochondrial/cytosolic folate flux as measured by Liquid Chromatography coupled Mass Spectrometry (LC-MS). Instead, SLC25A32 inhibition results in a respiratory chain dysfunction at the FAD-dependent complex II enzyme, induction of Reactive Oxygen Species (ROS) and depletion of reduced glutathione (GSH), which impairs cancer cell proliferation. Moreover, buthionine sulfoximine (BSO) treatment further sensitizes cells to ROS-mediated inhibition of cell proliferation upon SLC25A32 knock-down. Treatment of cells with the FAD precursor riboflavin and with GSH rescues cancer cell proliferation upon SLC25A32 down-regulation. Our results indicate that the reduction of mitochondrial FAD concentrations by targeting SLC25A32 has potential clinical applications as a single agent or in combination with approved cancer drugs that lead to increased oxidative stress and reduced tumor growth.

6.
Cancers (Basel) ; 12(1)2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31947537

ABSTRACT

Inhibiting the interaction of menin with the histone methyltransferase MLL1 (KMT2A) has recently emerged as a novel therapeutic strategy. Beneficial therapeutic effects have been postulated in leukemia, prostate, breast, liver and in synovial sarcoma models. In those indications, MLL1 recruitment by menin was described to critically regulate the expression of disease associated genes. However, most findings so far rely on single study reports. Here we independently evaluated the pathogenic functions of the menin-MLL interaction in a large set of different cancer models with a potent and selective probe inhibitor BAY-155. We characterized the inhibition of the menin-MLL interaction for anti-proliferation, gene transcription effects, and for efficacy in several in vivo xenografted tumor models. We found a specific therapeutic activity of BAY-155 primarily in AML/ALL models. In solid tumors, we observed anti-proliferative effects of BAY-155 in a surprisingly limited fraction of cell line models. These findings were further validated in vivo. Overall, our study using a novel, highly selective and potent inhibitor, shows that the menin-MLL interaction is not essential for the survival of most solid cancer models. We can confirm that disrupting the menin-MLL complex has a selective therapeutic benefit in MLL-fused leukemia. In solid cancers, effects are restricted to single models and more limited than previously claimed.

7.
J Hepatol ; 72(4): 725-735, 2020 04.
Article in English | MEDLINE | ID: mdl-31726117

ABSTRACT

BACKGROUND & AIM: Under the regulation of various oncogenic pathways, cancer cells undergo adaptive metabolic programming to maintain specific metabolic states that support their uncontrolled proliferation. As it has been difficult to directly and effectively inhibit oncogenic signaling cascades with pharmaceutical compounds, focusing on the downstream metabolic pathways that enable indefinite growth may provide therapeutic opportunities. Thus, we sought to characterize metabolic changes in hepatocellular carcinoma (HCC) development and identify metabolic targets required for tumorigenesis. METHODS: We compared gene expression profiles of Morris Hepatoma (MH3924a) and DEN (diethylnitrosamine)-induced HCC models to those of liver tissues from normal and rapidly regenerating liver models, and performed gain- and loss-of-function studies of the identified gene targets for their roles in cancer cell proliferation in vitro and in vivo. RESULTS: The proline biosynthetic enzyme PYCR1 (pyrroline-5-carboxylate reductase 1) was identified as one of the most upregulated genes in the HCC models. Knockdown of PYCR1 potently reduced cell proliferation of multiple HCC cell lines in vitro and tumor growth in vivo. Conversely, overexpression of PYCR1 enhanced the proliferation of the HCC cell lines. Importantly, PYCR1 expression was not elevated in the regenerating liver, and KD or overexpression of PYCR1 had no effect on proliferation of non-cancerous cells. Besides PYCR1, we found that additional proline biosynthetic enzymes, such as ALDH18A1, were upregulated in HCC models and also regulated HCC cell proliferation. Clinical data demonstrated that PYCR1 expression was increased in HCC, correlated with tumor grade, and was an independent predictor of clinical outcome. CONCLUSION: Enhanced expression of proline biosynthetic enzymes promotes HCC cell proliferation. Inhibition of PYCR1 or ALDH18A1 may be a novel therapeutic strategy to target HCC. LAY SUMMARY: Even with the recently approved immunotherapies against liver cancer, currently available medications show limited clinical benefits or efficacy in the majority of patients. As such, it remains a top priority to discover new targets for effective liver cancer treatment. Here, we identify a critical role for the proline biosynthetic pathway in liver cancer development, and demonstrate that targeting key proteins in the pathway, namely PYCR1 and ALDH18A1, may be a novel therapeutic strategy for liver cancer.


Subject(s)
Carcinogenesis/metabolism , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms/metabolism , Proline/biosynthesis , Signal Transduction/genetics , Aldehyde Dehydrogenase/deficiency , Aldehyde Dehydrogenase/genetics , Animals , Carcinogenesis/genetics , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/pathology , Cell Proliferation/genetics , Diethylnitrosamine/adverse effects , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , HEK293 Cells , HaCaT Cells , Hep G2 Cells , Humans , Liver Neoplasms/chemically induced , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Mice, SCID , Pyrroline Carboxylate Reductases/deficiency , Pyrroline Carboxylate Reductases/genetics , Rats , Transcriptome , Transfection , Tumor Burden/genetics , Xenograft Model Antitumor Assays , delta-1-Pyrroline-5-Carboxylate Reductase
8.
J Hematol Oncol ; 12(1): 66, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31253180

ABSTRACT

INTRODUCTION: The chromosomal rearrangements of the mixed-lineage leukemia gene MLL (KMT2A) have been extensively characterized as a potent oncogenic driver in leukemia. For its oncogenic function, most MLL-fusion proteins exploit the multienzyme super elongation complex leading to elevated expression of MLL target genes. High expression of MLL target genes overwrites the normal hematopoietic differentiation program, resulting in undifferentiated blasts characterized by the capacity to self-renew. Although extensive resources devoted to increased understanding of therapeutic targets to overcome de-differentiation in ALL/AML, the inter-dependencies of targets are still not well described. The majority of inhibitors potentially interfering with MLL-fusion protein driven transformation have been characterized in individual studies, which so far hindered their direct cross-comparison. METHODS: In our study, we characterized head-to-head clinical stage inhibitors for BET, DHODH, DOT1L as well as two novel inhibitors for CDK9 and the Menin-MLL interaction with a focus on differentiation induction. We profiled those inhibitors for global gene expression effects in a large cell line panel and examined cellular responses such as inhibition of proliferation, apoptosis induction, cell cycle arrest, surface marker expression, morphological phenotype changes, and phagocytosis as functional differentiation readout. We also verified the combination potential of those inhibitors on proliferation and differentiation level. RESULTS: Our analysis revealed significant differences in differentiation induction and in modulating MLL-fusion target gene expression. We observed Menin-MLL and DOT1L inhibitors act very specifically on MLL-fused leukemia cell lines, whereas inhibitors of BET, DHODH and P-TEFb have strong effects beyond MLL-fusions. Significant differentiation effects were detected for Menin-MLL, DOT1L, and DHODH inhibitors, whereas BET and CDK9 inhibitors primarily induced apoptosis in AML/ALL cancer models. For the first time, we explored combination potential of the abovementioned inhibitors with regards to overcoming the differentiation blockage. CONCLUSION: Our findings show substantial diversity in the molecular activities of those inhibitors and provide valuable insights into the further developmental potential as single agents or in combinations in MLL-fused leukemia.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Histone-Lysine N-Methyltransferase/genetics , Leukemia/drug therapy , Myeloid-Lymphoid Leukemia Protein/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Leukemic/drug effects , Gene Rearrangement/drug effects , Histone-Lysine N-Methyltransferase/metabolism , Humans , Leukemia/genetics , Leukemia/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Protein Interaction Maps/drug effects , Proto-Oncogene Proteins/metabolism
9.
Leukemia ; 33(10): 2403-2415, 2019 10.
Article in English | MEDLINE | ID: mdl-30940908

ABSTRACT

Acute myeloid leukemia (AML) is a devastating disease, with the majority of patients dying within a year of diagnosis. For patients with relapsed/refractory AML, the prognosis is particularly poor with currently available treatments. Although genetically heterogeneous, AML subtypes share a common differentiation arrest at hematopoietic progenitor stages. Overcoming this differentiation arrest has the potential to improve the long-term survival of patients, as is the case in acute promyelocytic leukemia (APL), which is characterized by a chromosomal translocation involving the retinoic acid receptor alpha gene. Treatment of APL with all-trans retinoic acid (ATRA) induces terminal differentiation and apoptosis of leukemic promyelocytes, resulting in cure rates of over 80%. Unfortunately, similarly efficacious differentiation therapies have, to date, been lacking outside of APL. Inhibition of dihydroorotate dehydrogenase (DHODH), a key enzyme in the de novo pyrimidine synthesis pathway, was recently reported to induce differentiation of diverse AML subtypes. In this report we describe the discovery and characterization of BAY 2402234 - a novel, potent, selective and orally bioavailable DHODH inhibitor that shows monotherapy efficacy and differentiation induction across multiple AML subtypes. Herein, we present the preclinical data that led to initiation of a phase I evaluation of this inhibitor in myeloid malignancies.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Differentiation/drug effects , Enzyme Inhibitors/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Animals , Apoptosis/drug effects , Cell Line, Tumor , Dihydroorotate Dehydrogenase , Female , HL-60 Cells , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Pyrimidines/metabolism , THP-1 Cells , Translocation, Genetic/drug effects
10.
J Med Chem ; 62(2): 928-940, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30563338

ABSTRACT

The availability of a chemical probe to study the role of a specific domain of a protein in a concentration- and time-dependent manner is of high value. Herein, we report the identification of a highly potent and selective ERK5 inhibitor BAY-885 by high-throughput screening and subsequent structure-based optimization. ERK5 is a key integrator of cellular signal transduction, and it has been shown to play a role in various cellular processes such as proliferation, differentiation, apoptosis, and cell survival. We could demonstrate that inhibition of ERK5 kinase and transcriptional activity with a small molecule did not translate into antiproliferative activity in different relevant cell models, which is in contrast to the results obtained by RNAi technology.


Subject(s)
Mitogen-Activated Protein Kinase 7/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Pyridines/chemistry , Pyrimidines/chemistry , Apoptosis/drug effects , Binding Sites , Cell Differentiation/drug effects , Cell Line , Cell Proliferation/drug effects , Crystallography, X-Ray , Drug Evaluation, Preclinical , Half-Life , Humans , Mitogen-Activated Protein Kinase 7/metabolism , Molecular Docking Simulation , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Structure, Tertiary , Pyridines/metabolism , Pyridines/pharmacology , Pyrimidines/metabolism , Pyrimidines/pharmacology , Signal Transduction/drug effects , Structure-Activity Relationship , Transcription, Genetic/drug effects
11.
ACS Chem Biol ; 12(8): 1986-1992, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28679043

ABSTRACT

MTH1 is a hydrolase responsible for sanitization of oxidized purine nucleoside triphosphates to prevent their incorporation into replicating DNA. Early tool compounds published in the literature inhibited the enzymatic activity of MTH1 and subsequently induced cancer cell death; however recent studies have questioned the reported link between these two events. Therefore, it is important to validate MTH1 as a cancer dependency with high quality chemical probes. Here, we present BAY-707, a substrate-competitive, highly potent and selective inhibitor of MTH1, chemically distinct compared to those previously published. Despite superior cellular target engagement and pharmacokinetic properties, inhibition of MTH1 with BAY-707 resulted in a clear lack of in vitro or in vivo anticancer efficacy either in mono- or in combination therapies. Therefore, we conclude that MTH1 is dispensable for cancer cell survival.


Subject(s)
DNA Repair Enzymes/metabolism , Drug Delivery Systems , Morpholines/pharmacology , Neoplasms/drug therapy , Neoplasms/enzymology , Phosphoric Monoester Hydrolases/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Caco-2 Cells , Cells, Cultured , DNA Repair Enzymes/antagonists & inhibitors , Enzyme Activation/drug effects , HeLa Cells , Hepatocytes/drug effects , Humans , MCF-7 Cells , Mice , Mice, Nude , Microsomes, Liver/drug effects , Models, Molecular , Morpholines/chemistry , Neoplasms/physiopathology , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Pyrimidines/chemistry , Pyrimidines/pharmacology , Rats
13.
Cell Cycle ; 14(23): 3734-47, 2015.
Article in English | MEDLINE | ID: mdl-26654769

ABSTRACT

Seven-in-absentia homolog (SIAH) proteins are evolutionary conserved RING type E3 ubiquitin ligases responsible for the degradation of key molecules regulating DNA damage response, hypoxic adaptation, apoptosis, angiogenesis, and cell proliferation. Many studies suggest a tumorigenic role for SIAH2. In breast cancer patients SIAH2 expression levels correlate with cancer aggressiveness and overall patient survival. In addition, SIAH inhibition reduced metastasis in melanoma. The role of SIAH1 in breast cancer is still ambiguous; both tumorigenic and tumor suppressive functions have been reported. Other studies categorized SIAH ligases as either pro- or antimigratory, while the significance for metastasis is largely unknown. Here, we re-evaluated the effects of SIAH1 and SIAH2 depletion in breast cancer cell lines, focusing on migration and invasion. We successfully knocked down SIAH1 and SIAH2 in several breast cancer cell lines. In luminal type MCF7 cells, this led to stabilization of the SIAH substrate Prolyl Hydroxylase Domain protein 3 (PHD3) and reduced Hypoxia-Inducible Factor 1α (HIF1α) protein levels. Both the knockdown of SIAH1 or SIAH2 led to increased apoptosis and reduced proliferation, with comparable effects. These results point to a tumor promoting role for SIAH1 in breast cancer similar to SIAH2. In addition, depletion of SIAH1 or SIAH2 also led to decreased cell migration and invasion in breast cancer cells. SIAH knockdown also controlled microtubule dynamics by markedly decreasing the protein levels of stathmin, most likely via p27(Kip1). Collectively, these results suggest that both SIAH ligases promote a migratory cancer cell phenotype and could contribute to metastasis in breast cancer.


Subject(s)
Breast Neoplasms/genetics , Cell Movement/genetics , Neoplasm Invasiveness/genetics , Nuclear Proteins/physiology , Ubiquitin-Protein Ligases/physiology , Apoptosis/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclin-Dependent Kinase Inhibitor p27/physiology , Gene Knockdown Techniques , Humans , MCF-7 Cells , Microtubules/metabolism , Neoplasm Metastasis/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA Interference , Stathmin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
14.
Stem Cell Reports ; 5(5): 843-855, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26607954

ABSTRACT

The dynamics and interactions between stem cell pools in the hair follicle (HF), sebaceous gland (SG), and interfollicular epidermis (IFE) of murine skin are still poorly understood. In this study, we used multicolor lineage tracing to mark Lgr6⁺ -expressing basal cells in the HF isthmus, SG, and IFE.We show that these Lgr6⁺ cells constitute long-term self-renewing populations within each compartment in adult skin. Quantitative analysis of clonal dynamics revealed that the Lgr6⁺ progenitor cells compete neutrally in the IFE, isthmus, and SG, indicating population asymmetry as the underlying mode of tissue renewal. Transcriptional profiling of Lgr6⁺ and Lgr6⁺ cells did not reveal a distinct Lgr6⁺ -associated gene expression signature, raising the question of whether Lgr6⁺ expression requires extrinsic niche signals. Our results elucidate the interrelation and behavior of Lgr6⁺ populations in the IFE, HF, and SG and suggest population asymmetry as a common mechanism for homeostasis in several epithelial skin compartments.


Subject(s)
Adult Stem Cells/cytology , Cell Self Renewal , Hair Follicle/cytology , Sebaceous Glands/cytology , Adult Stem Cells/metabolism , Animals , Cells, Cultured , Keratinocytes/cytology , Keratinocytes/metabolism , Mice , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Stem Cell Niche , Transcriptome
15.
Mol Cancer Ther ; 12(11): 2319-30, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24170767

ABSTRACT

Because of the complexity derived from the existence of various phosphoinositide 3-kinase (PI3K) isoforms and their differential roles in cancers, development of PI3K inhibitors with differential pharmacologic and pharmacokinetic profiles would allow best exploration in different indications, combinations, and dosing regimens. Here, we report BAY 80-6946, a highly selective and potent pan-class I PI3K inhibitor with sub-nanomolar IC50s against PI3Kα and PI3Kδ. BAY 80-6946 exhibited preferential inhibition (about 10-fold) of AKT phosphorylation by PI3Kα compared with PI3Kß in cells. BAY 80-6946 showed superior antitumor activity (>40-fold) in PIK3CA mutant and/or HER2 overexpression as compared with HER2-negative and wild-type PIK3CA breast cancer cell lines. In addition, BAY 80-6946 revealed potent activity to induce apoptosis in a subset of tumor cells with aberrant activation of PI3K as a single agent. In vivo, single intravenous administration of BAY 80-6946 exhibited higher exposure and prolonged inhibition of pAKT levels in tumors versus plasma. BAY 80-6946 is efficacious in tumors with activated PI3K when dosed either continuously or intermittently. Thus, BAY 80-6946 induced 100% complete tumor regression when dosed as a single agent every second day in rats bearing HER2-amplified and PIK3CA-mutated KPL4 breast tumors. In combination with paclitaxel, weekly dosing of BAY 80-6946 is sufficient to reach sustained response in all animals bearing patient-derived non-small cell lung cancer xenografts, despite a short plasma elimination half-life (1 hour) in mice. Thus, BAY 80-6946 is a promising agent with differential pharmacologic and pharmacokinetic properties for the treatment of PI3K-dependent human tumors.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Pyrimidines/pharmacology , Quinazolines/pharmacology , Administration, Intravenous , Animals , Apoptosis/drug effects , Cell Line, Tumor , Drug Evaluation, Preclinical , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Nude , Molecular Targeted Therapy , Neoplasms/genetics , Neoplasms, Experimental , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Pyrimidines/pharmacokinetics , Quinazolines/pharmacokinetics , Rats , Rats, Nude , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
16.
Cell ; 151(7): 1595-607, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23260145

ABSTRACT

Most studies on TCF7L2 SNP variants in the pathogenesis of type 2 diabetes (T2D) focus on a role of the encoded transcription factor TCF4 in ß cells. Here, a mouse genetics approach shows that removal of TCF4 from ß cells does not affect their function, whereas manipulating TCF4 levels in the liver has major effects on metabolism. In Tcf7l2(-/-) mice, the immediate postnatal surge in liver metabolism does not occur. Consequently, pups die due to hypoglycemia. By combining chromatin immunoprecipitation with gene expression profiling, we identify a TCF4-controlled metabolic gene program that is acutely activated in the postnatal liver. In concordance, adult liver-specific Tcf7l2 knockout mice show reduced hepatic glucose production during fasting and display improved glucose homeostasis when maintained on high-fat diet. Furthermore, liver-specific TCF4 overexpression increases hepatic glucose production. These observations imply that TCF4 directly activates metabolic genes and that inhibition of Wnt signaling may be beneficial in metabolic disease.


Subject(s)
Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Glucose/metabolism , Liver/metabolism , Metabolic Networks and Pathways , Transcription Factor 7-Like 2 Protein/metabolism , Animals , Animals, Newborn , Diet, High-Fat , Fasting/metabolism , Islets of Langerhans/metabolism , Mice , Mice, Knockout , Transcription Factor 7-Like 2 Protein/genetics , Transcriptional Activation
17.
Mol Cell Biol ; 32(10): 1918-27, 2012 May.
Article in English | MEDLINE | ID: mdl-22393260

ABSTRACT

Throughout life, intestinal Lgr5+ stem cells give rise to proliferating transient amplifying cells in crypts, which subsequently differentiate into one of the five main cell types and migrate along the crypt-villus axis. These dynamic processes are coordinated by a relatively small number of evolutionarily conserved signaling pathways, which includes the Wnt signaling pathway. The DNA-binding proteins of the T-cell factor family, Tcf1/Tcf7, Lef, Tcf3/Tcf7l1, and Tcf4/Tcf7l2, constitute the downstream effectors of the Wnt signaling pathway. While Tcf4 is the major member active during embryogenesis, the role of these Wnt effectors in the homeostasis of the adult mouse intestinal epithelium is unresolved. Using Tcf1-/-, Tcf3(flox), and novel Tcf4(flox) mice, we demonstrate an essential role for Tcf4 during homeostasis of the adult mouse intestine.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Intestines/cytology , Stem Cells/metabolism , Wnt Signaling Pathway , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cell Differentiation , Cell Proliferation , Gene Expression Regulation, Developmental , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Mice , Stem Cells/cytology , Transcription Factor 4
18.
Nature ; 476(7360): 293-7, 2011 Jul 04.
Article in English | MEDLINE | ID: mdl-21727895

ABSTRACT

The adult stem cell marker Lgr5 and its relative Lgr4 are often co-expressed in Wnt-driven proliferative compartments. We find that conditional deletion of both genes in the mouse gut impairs Wnt target gene expression and results in the rapid demise of intestinal crypts, thus phenocopying Wnt pathway inhibition. Mass spectrometry demonstrates that Lgr4 and Lgr5 associate with the Frizzled/Lrp Wnt receptor complex. Each of the four R-spondins, secreted Wnt pathway agonists, can bind to Lgr4, -5 and -6. In HEK293 cells, RSPO1 enhances canonical WNT signals initiated by WNT3A. Removal of LGR4 does not affect WNT3A signalling, but abrogates the RSPO1-mediated signal enhancement, a phenomenon rescued by re-expression of LGR4, -5 or -6. Genetic deletion of Lgr4/5 in mouse intestinal crypt cultures phenocopies withdrawal of Rspo1 and can be rescued by Wnt pathway activation. Lgr5 homologues are facultative Wnt receptor components that mediate Wnt signal enhancement by soluble R-spondin proteins. These results will guide future studies towards the application of R-spondins for regenerative purposes of tissues expressing Lgr5 homologues.


Subject(s)
Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Thrombospondins/metabolism , Wnt Proteins/metabolism , Adult Stem Cells/metabolism , Animals , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/metabolism , Frizzled Receptors/metabolism , Gene Deletion , HEK293 Cells , Humans , Mice , Protein Binding , Protein Structure, Tertiary , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics , Regeneration , Signal Transduction/genetics , Wnt Proteins/genetics , Wnt3 Protein , Wnt3A Protein
19.
Gastroenterology ; 141(4): 1371-80, 1380.e1-2, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21741923

ABSTRACT

BACKGROUND & AIMS: Protein tyrosine kinase 6 (PTK6) is expressed throughout the gastrointestinal tract and is a negative regulator of proliferation that promotes differentiation and DNA-damage-induced apoptosis in the small intestine. PTK6 is not expressed in normal mammary gland, but is induced in most human breast tumors. Signal transducer and activator of transcription 3 (STAT3) mediates pathogenesis of colon cancer and is a substrate of PTK6. We investigated the role of PTK6 in colon tumorigenesis. METHODS: Ptk6+/+ and Ptk6-/- mice were injected with azoxymethane alone or in combination with dextran sodium sulfate; formation of aberrant crypt foci and colon tumors was examined. Effects of disruption of Ptk6 on proliferation, apoptosis, and STAT3 activation were examined by immunoblot and immunohistochemical analyses. Regulation of STAT3 activation was examined in the HCT116 colon cancer cell line and young adult mouse colon cells. RESULTS: Ptk6-/- mice developed fewer azoxymethane-induced aberrant crypt foci and tumors. Induction of PTK6 increased apoptosis, proliferation, and STAT3 activation in Ptk6+/+ mice injected with azoxymethane. Disruption of Ptk6 impaired STAT3 activation following azoxymethane injection, and reduced active STAT3 levels in Ptk6-/- tumors. Stable knockdown of PTK6 reduced basal levels of active STAT3, as well as activation of STAT3 by epidermal growth factor in HCT116 cells. Disruption of Ptk6 reduced activity of STAT3 in young adult mouse colon cells. CONCLUSIONS: PTK6 promotes STAT3 activation in the colon following injection of the carcinogen azoxymethane and regulates STAT3 activity in mouse colon tumors and in the HCT116 and young adult mouse colon cell lines. Disruption of Ptk6 decreases azoxymethane-induced colon tumorigenesis in mice.


Subject(s)
Aberrant Crypt Foci/prevention & control , Azoxymethane , Carcinogens , Colon/enzymology , Colonic Neoplasms/prevention & control , STAT3 Transcription Factor/metabolism , src-Family Kinases/deficiency , Aberrant Crypt Foci/enzymology , Aberrant Crypt Foci/genetics , Aberrant Crypt Foci/pathology , Animals , Apoptosis , Cell Proliferation , Colon/pathology , Colonic Neoplasms/chemically induced , Colonic Neoplasms/enzymology , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Dextran Sulfate , Disease Models, Animal , HCT116 Cells , Humans , Immunoblotting , Immunohistochemistry , Mice , Mice, Knockout , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Phosphorylation , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , RNA Interference , STAT3 Transcription Factor/genetics , Signal Transduction , Time Factors , src-Family Kinases/genetics
20.
Science ; 327(5971): 1385-9, 2010 Mar 12.
Article in English | MEDLINE | ID: mdl-20223988

ABSTRACT

Mammalian epidermis consists of three self-renewing compartments: the hair follicle, the sebaceous gland, and the interfollicular epidermis. We generated knock-in alleles of murine Lgr6, a close relative of the Lgr5 stem cell gene. Lgr6 was expressed in the earliest embryonic hair placodes. In adult hair follicles, Lgr6+ cells resided in a previously uncharacterized region directly above the follicle bulge. They expressed none of the known bulge stem cell markers. Prenatal Lgr6+ cells established the hair follicle, sebaceous gland, and interfollicular epidermis. Postnatally, Lgr6+ cells generated sebaceous gland and interfollicular epidermis, whereas contribution to hair lineages gradually diminished with age. Adult Lgr6+ cells executed long-term wound repair, including the formation of new hair follicles. We conclude that Lgr6 marks the most primitive epidermal stem cell.


Subject(s)
Cell Lineage , Hair Follicle/cytology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Skin/cytology , Stem Cells/cytology , Animals , Epidermal Cells , Gene Expression Profiling , Gene Knock-In Techniques , Hair/cytology , Hair/embryology , Hair/growth & development , Hair Follicle/embryology , Hair Follicle/growth & development , Mice , Mice, Nude , Sebaceous Glands/cytology , Signal Transduction , Stem Cell Transplantation , Stem Cells/metabolism , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...