Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Leg Med (Tokyo) ; 67: 102399, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219704

ABSTRACT

The field of bitemark analysis involves examining physical alterations in a medium resulting from contact with teeth and other oral structures. Various techniques, such as 2D and 3D imaging, have been developed in recent decades to ensure precise analysis of bitemarks. This study assessed the precision of using a smartphone camera to generate 3D models of bitemark patterns. A 3D model of the bite mark pattern was created using 3Shape TRIOSTM and a smartphone camera combined with monoscopic photogrammetry. The mesiodistal dimensions of the anterior teeth were measured using Rapidform Explorer and OrtogOnBlender, and the collected data were analyzed using IBM® SPSS® Statistics version 23.0. The mean mesiodistal dimension of the anterior teeth, as measured on the 3D model from 3Shape TRIOSTM and smartphone cameras, was found to be 6.95 ± 0.7667 mm and 6.94 ± 0.7639 mm, respectively. Statistical analysis revealed no significant difference between the two measurement methods, p > 0.05. The outcomes derived from this study unequivocally illustrate that a smartphone camera possessing the specific parameters detailed in this study can create a 3D representation of bite patterns with an accuracy level on par with the outputs of a 3D intraoral camera. These findings underscore the promising trajectory of merging smartphone cameras and monoscopic photogrammetry techniques, positioning them as a budget-friendly avenue for 3D bitemark analysis. Notably, the monoscopic photogrammetry methodology assumes substantial significance within forensic odontology due to its capacity for precise 3D reconstructions and the preservation of critical measurement data.


Subject(s)
Bites, Human , Tooth , Humans , Smartphone , Feasibility Studies , Forensic Dentistry/methods , Imaging, Three-Dimensional
2.
Article in English | LILACS, BBO - Dentistry | ID: biblio-1431044

ABSTRACT

Abstract Bitemark analysis is a challenging procedure in the field of criminal case investigation. The unique characteristics of dentition are used to find the best match between the existing patterned injury and the suspected perpetrator in bitemark identification. Bitemark analysis accuracy can be influenced by various factors, including biting pressure, tooth morphology, skin elasticity, dental cast duplication, timing, and image quality. This review article discusses the potential of a smartphone camera as an alternative method for 3D bitemark analysis. Bitemark evidence on human skin and food should be immediately recorded or duplicated to retrieve long-lasting proof, allowing for a sufficient examination period. Various studies utilizing two-dimensional (2D) and three-dimensional (3D) technologies have been developed to obtain an adequate bitemark analysis. 3D imaging technology provides accurate and precise analysis. However, the currently available method using an intraoral scanner (IOS) requires high-cost specialized equipment and a well-trained operator. The numerous advantages of monoscopic photogrammetry may lead to a novel method of 3D bitemark analysis in forensic odontology. Smartphone cameras and monoscopic photogrammetry methodology could lead to a novel method of 3D bitemark analysis with an efficient cost and readily available equipment.


Subject(s)
Bites, Human/diagnostic imaging , Photogrammetry/instrumentation , Smartphone , Forensic Dentistry , Identity Recognition , Forensic Anthropology , Imaging, Three-Dimensional/methods , Odontometry
SELECTION OF CITATIONS
SEARCH DETAIL
...