Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Reprod Sci ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39317887

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a multifactorial disease that cannot be linked to a single pathway, causing the observed heterogeneity among T2DM patients. Despite this level of heterogeneity, T2DM is majorly managed by metformin (MET) monotherapy. However, recent findings have associated long-term metformin intake with progressive oxidative pancreatic ß cell damage as the disease progresses. Hence, a significant number of patients treated with MET need an alternate therapy. Hence, identifying drug combinations that can effectively alleviate different diabetes complications would serve as a more promising therapy that can translate into active use. Hence, this study was designed to explore the possible synergistic effect of vitamin D and metformin on T2DM-induced testicular dysfunction. Thirty healthy male Wistar rats (weight: 120-150 g and age: 10 ± 2 weeks) were randomly divided into control, diabetes untreated (HFD+STZ), diabetes + vitamin D (1000 IU/kg), diabetes + metformin (180 mg/kg), and diabetes + vitamin D + metformin. All treatments lasted for 28 days and animals were sacrificed using IP injection of ketamine and xylaxine (40 and 4 mg/kg respectively). Vitamin D improved the ameliorative effect of metformin on T2DM-induced hyperglycemia and lipid dysmetabolism, accompanied by a significant decrease in testicular lactate dehydrogenase and lactate. Also, vitamin D + metformin significantly increased serum luteinizing hormone, follicle-stimulating hormone, testosterone, and testicular 5α reductase activities. Furthermore, vitamin D improved the anti-inflammatory and antioxidant effects of metformin by significantly decreasing T2DM-induced increase in testicular interleukin 1beta, interleukin 6, TNF-α, nitric oxide, and NF-κB and increasing T2DM-induced decrease in interleukin 10, glutathione, superoxide dismutase, catalase, GPx, and Nrf2. Vitamin D enhanced the ameliorative effect of metformin on T2DM-induced testicular dysfunction.

2.
Toxicol Res ; 40(4): 613-626, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39345745

ABSTRACT

Lead exposure has been implicated in the aetiopathogenesis of male infertility via an oxidative stress-sensitive pathway. Conversely, acetate has been shown to confer cellular protection by improving the antioxidant defense mechanism. Yet, the effect of acetate on lead-induced testicular toxicity, viz., dysregulation of testicular steroidogenesis and spermatogenesis, has not been reported. The present study probed the influence of acetate on lead-induced dysregulation of testicular steroidogenesis and spermatogenesis. In our study, a reduction in body weight gain and testicular weight was identified in lead-exposed rats. While histopathological results established distortion of testicular histoarchitecture, reduced germ cell count, and suppressed spermatogenesis, biochemical studies confirmed that lead-deregulated testicular steroidogenesis was associated with reduced circulating gonadotropin-releasing hormone and gonadotropins, as well as down-regulated testicular 3ß-HSD and 17ß-HSD activities. These findings were accompanied by increased testicular malondialdehyde, TNF-α, IL-1ß, and IL-6, and reduced glutathione, thiol and non-thiol protein levels, total antioxidant capacity, superoxide dismutase, and catalase activities. In addition, lead exposure increased NFkB and Bax levels, as well as caspase 3 activity, but reduced Bcl-2 levels. However, co-administration of acetate ameliorated lead-induced alterations. Collectively, acetate attenuated lead-induced dysregulation of testicular steroidogenesis and spermatogenesis by targeting oxidative stress, NFkB-mediated inflammation, and caspase 3-driven apoptosis. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-024-00250-3.

3.
Front Nutr ; 11: 1443895, 2024.
Article in English | MEDLINE | ID: mdl-39149552

ABSTRACT

Background: Tamoxifen (TAM) is a widely used drug in patients with gynecomastia and breast cancer. TAM exerts its anticancer effects via its antiestrogenic activities. Unfortunately, TAM has been reported to exert gonadotoxic effects on male testes. Therefore, this study was designed to explore the possible associated mechanisms involved in TAM-induced testicular dysfunction and the possible ameliorative effects of omega-3 fatty acids (O3FA). Methodology: Animals were randomly divided into control, O3FA, TAM, and TAM + O3FA. All treatment lasted for 28 days. Results: TAM exposure impaired sperm qualities (count, motility, and normal morphology) and decreased testicular 3ß-HSD and 17ß-HSD. It was accompanied by a decline in serum testosterone and an increase in estradiol, luteinizing and follicle-stimulating hormones. These observed alterations were associated with an increase in testicular injury markers, oxido-inflammatory response, and mitochondria-mediated apoptosis. These observed alterations were ameliorated by O3FA treatments. Conclusions: O3FA ameliorated TAM-induced testicular dysfunction in male Wistar rats by modulating XO/UA and Nrf2/NF-kb signaling and cytochrome c-mediated apoptosis in TAM-treated rats.

4.
J Trace Elem Med Biol ; 86: 127505, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39106537

ABSTRACT

BACKGROUND: Sodium Benzoate (SB) is used in daily products such as drinks, juices, sauces, oils, ketchup, toothpaste, mouthwashes, cosmetics, dentifrices, and pharmaceutical products. However, SB has been implicated in gonadotoxicity even at a dosage within the safe limit. Zinc (Zn), on the other hand, has been shown to improve various fertility indices. Hence, this study was designed to explore the possible ameliorative effect of Zn on SB-induced testicular toxicity. METHODS: Animals were randomly divided into control, SB, Zn, and SB+Zn. All treatment lasted for 28 days. RESULTS: SB treatment caused a derangement in reproductive hormone levels, sperm function, and kinematics and a down-regulation of the Androgen receptor (ANDR). Also, a decrease in testicular levels of SOD, CAT, GSH, Nrf2, and HO- 1 activity and an increase in IL-1ß, TNF-α, Nf-κB, and Caspase 3 were observed. These SB-induced distortions were ameliorated in SB-treated rats exposed to Zn. CONCLUSION: Our study suggests that zinc abates SB-induced testicular toxicity by modulating Nrf2/HO-1/ Nf-κB signaling and ANDR upregulation.

5.
F S Sci ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004305

ABSTRACT

OBJECTIVE: To examine the effect of skoochies, an illicit cocktail drink, on testicular and sperm function in male rats. DESIGN: Twenty-five adult male Wistar rats were assigned randomly into five groups (n = 5) as follows: normal saline; skoochies; Cannabis sativa; codeine; and tramadol. The cocktail (skoochies) used in this study was formulated with the following composition: codeine (5 mg/kg); tramadol (20 mg/kg); and cannabis extract (2 mg/kg). These doses are as previously reported. Administration was performed once daily for 28 days. SETTING: University. ANIMAL(S): Twenty-five (25) male Wistar rats. INTERVENTION(S): Skoochies, tramadol, Codeiene, Cannabis. MAIN OUTCOME MEASURE(S): Skoochies and its components induced testicular and sperm damage via increased generation of reactive oxygen species and impairment of glutathione system in rats. RESULT(S): Skoochies increased reactive oxygen species generation and impaired the antioxidant system resulting in inflammation that eventually damaged the testicular tissue. Skoochies caused oxidoinflammatory injury to this tissue, leading to impaired testicular function. This was evident by the distorted cytoarchitecture, reduced sperm count and motility, and impaired testicular deoxyribonucleic acid integrity. CONCLUSION(S): Thus, our results infer that skoochies impaired the testicular and sperm function through the increased generation of reactive oxygen species and impairment of the glutathione system.

6.
Cell Biochem Biophys ; 82(2): 1007-1018, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38530591

ABSTRACT

This study explored the effect of intestinal ischaemia/reperfusion (I/R) on cardiorenal tissues. The involvement of xanthine oxidase/uric acid/NF-kB signaling in intestinal I/R was also investigated. In addition, the possible protective effect of glutamine was also evaluated. Twenty-four male Wistar rats were acclimatized and then randomly assigned to four groups (n = 6); sham-operated, glutamine-treated rats (GLUT), I/R, and I/R + GLUT. The sham-operated rats were sham-operated and received 0.5 mL of distilled water, GLUT rats were sham-operated and had 1 g/kg b.w. of glutamine, I/R animals had an intestinal I/R procedure and received 0.5 mL of distilled water, and the I/R + GLUT rats had an intestinal I/R procedure and also received 1 g/kg b.w. of glutamine. Treatments were daily and per os. Glutamine attenuated intestinal I/R-induced rise in intestinal and cardiorenal activities of creatinine kinase and lactate dehydrogenase and lactate level. More so, glutamine alleviated I/R-induced rise in malondialdehyde, xanthine oxidase, uric acid, myeloperoxidase, NF-kB, TNF-α, IL-1ß, caspase 3 activity, and DNA fragmentation. Furthermore, glutamine suppressed I/R-induced decline in GSH levels and SOD and catalase activities. Moreover, glutamine improved intestinal, cardiac, and renal histology in animals subjected to intestinal I/R.


Subject(s)
Glutamine , Signal Transduction , Uric Acid , Xanthine Oxidase , Animals , Male , Rats , Bacterial Translocation/drug effects , Caspase 3/metabolism , Glutamine/pharmacology , Glutamine/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Interleukin-1beta/metabolism , Intestines/drug effects , Intestines/pathology , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Malondialdehyde/metabolism , NF-kappa B/metabolism , Rats, Wistar , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Uric Acid/metabolism , Xanthine Oxidase/metabolism
7.
J Surg Res ; 295: 431-441, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38070257

ABSTRACT

INTRODUCTION: Disruption of intestinal histoarchitecture and intestinal dysmotility is critical to intestinal ischemia/reperfusion (IR) injury and xanthine oxidase (XO)/uric acid (UA) signaling and increased lactate generation have been reported to play a role. More so, glutamine treatment has been demonstrated to inhibit XO/UA signaling. However, the role of glutamine in intestinal IR injury-induced intestinal dysmotility and the associated mechanisms of action are unclear. Therefore, this study was to investigate the mechanisms underlying the role of glutamine in intestinal IR injury. METHODS: Forty male Wistar rats were acclimatized for two weeks and then randomized into four groups. The sham-operated, glutamine-treated, intestinal IR, and IR + glutamine groups. RESULTS: Glutamine therapy attenuated the IR-induced increase in intestinal weight, disruption of intestinal histoarchitecture, and intestinal dysmotility. In addition, glutamine ameliorated IR-induced intestinal oxidative stress (increased malondialdehyde, reduced glutathione and superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, and glucose-6-phosphate dehydrogenase activities), inflammation (increased TNF-α and IL-1ß), and apoptosis (increased caspase three activity). These events were accompanied by glutamine alleviation of IR-induced upregulation of intestinal nuclear factor kappa B, XO/UA, and lactate generation. CONCLUSIONS: In conclusion, XO/UA signaling and lactate levels are key factors in IR-induced intestinal injury and dysmotility, and glutamine-mediated XO/UA/lactate modulation may attenuate IR-induced intestinal injury and dysmotility.


Subject(s)
Intestinal Diseases , Reperfusion Injury , Rats , Animals , Male , Rats, Wistar , Uric Acid , Xanthine Oxidase/metabolism , Glutamine , Lactic Acid , Down-Regulation , Oxidative Stress , Reperfusion Injury/prevention & control
8.
Histol Histopathol ; : 18684, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38088133

ABSTRACT

Infertility is a growing challenge globally with emerging risk factors. There are effective laboratory tests to evaluate infertility in humans, nevertheless, some measures, especially histopathological evaluations, are invasive due to the pain inflicted when accessing the reproductive organs and obtaining samples; hence, their relevance may be limited in humans. However, these histopathological evaluations provide essential information on the etiopathogenesis of infertility and the likely mechanisms of action of potential therapeutic candidates. Also, non-invasive methods are available, such as the assay of testosterone in the blood and semen analysis, both of which are predictors of testicular functions. This review provides detailed information on the available histopathological investigations of infertility, such as qualitative and quantitative histopathological assessments of gonadal tissues, specific cell counts, and sperm morphology characterization, with a focus on the procedures, interpretation, and pathophysiological basis. Data from the literature revealed that histopathological examinations of the reproductive organs, as well as spermatozoa, are useful in understanding the pathogenesis of incident infertility. Histopathological evaluation may range from basic hematoxylin and eosin stains to some special stains. Also, histopathological findings (such as spermatogenic cells and planimetric variables, like seminiferous tubule diameter and theca cell and corpus luteum thickness) may be quantified and analyzed for comparison. Some skill is required for these investigations, which may be a limiting factor; however, they are important tools in translational medicine.

9.
Reprod Biol Endocrinol ; 21(1): 69, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37507788

ABSTRACT

Although psychoactive drugs have their therapeutic values, they have been implicated in the pathogenesis of male infertility. This study highlights psychoactive drugs reported to impair male fertility, their impacts, and associated mechanisms. Published data from scholarly peer-reviewed journals were used for the present study. Papers were assessed through AJOL, DOAJ, Google Scholar, PubMed/PubMed Central, and Scopus using Medical Subjects Heading (MeSH) indexes and relevant keywords. Psychoactive drugs negatively affect male reproductive functions, including sexual urge, androgen synthesis, spermatogenesis, and sperm quality. These drugs directly induce testicular toxicity by promoting ROS-dependent testicular and sperm oxidative damage, inflammation, and apoptosis, and they also suppress the hypothalamic-pituitary-testicular axis. This results in the suppression of circulating androgen, impaired spermatogenesis, and reduced sperm quality. In conclusion, psychoactive drug abuse not only harms male sexual and erectile function as well as testicular functions, viz., testosterone concentration, spermatogenesis, and sperm quality, but it also alters testicular histoarchitecture through a cascade of events via multiple pathways. Therefore, offering adequate and effective measures against psychoactive drug-induced male infertility remains pertinent.


Subject(s)
Androgens , Infertility, Male , Male , Humans , Androgens/metabolism , Semen , Testis/metabolism , Spermatogenesis , Infertility, Male/etiology , Fertility , Psychotropic Drugs/adverse effects , Psychotropic Drugs/metabolism
10.
Redox Rep ; 28(1): 2225675, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37345699

ABSTRACT

AIM: The present study evaluated the effect of lead exposure with and without zinc therapy on male sexual and erectile function. METHODS: Twenty male Wistar rats were randomly assigned into four groups; the control, zinc-treated, lead-exposed, lead + zinc-treated groups. Administrations were per os daily for 28 days. RESULTS: Zinc co-administration significantly improved absolute and relative penile weights and the latencies and frequencies of mount, intromission, and ejaculation in lead-exposed rats. Also, zinc ameliorated lead-induced reductions in motivation to mate and penile reflex/erection. These findings were accompanied by attenuation of lead-induced suppression of circulating nitric oxide (NO), penile cyclic guanosine monophosphate (cGMP), dopamine, serum luteinizing hormone, follicle-stimulating hormone, and testosterone. In addition, zinc alleviated lead-induced upregulation of penile activities of acetylcholinesterase and xanthine oxidase (XO), and uric acid (UA) and malondialdehyde (MDA) levels. Furthermore, zinc ameliorated the lead-induced decline in penile nuclear factor erythroid 2-related factor 2 (Nrf2) and reduced glutathione (GSH) levels, and catalase, superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) activities. CONCLUSION: This study revealed that co-administration of zinc improves lead-induced sexual and erectile dysfunction by suppressing XO/UA-driven oxidative stress and upregulating testosterone via Nrf2-mediated signaling.


Subject(s)
Erectile Dysfunction , Testosterone , Male , Rats , Animals , Humans , Zinc/therapeutic use , Erectile Dysfunction/chemically induced , Erectile Dysfunction/drug therapy , Acetylcholinesterase , NF-E2-Related Factor 2 , Rats, Wistar , Uric Acid
11.
Molecules ; 27(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36014309

ABSTRACT

Ethnopharmacological relevance: Oxidative stress is a key player in intestinal ischemia/reperfusion (I/R) injury (IIRI) with a tendency to trigger systemic inflammatory response, resulting in progressive distal organ injury. To date, the role of Bax/caspase 3 signaling in IIRI has not been reported. Furthermore, the discovery of a safe and effective drug remains pertinent in improving the outcome of IIRI. Therefore, this study investigated the role of Bax/caspase 3 signaling in intestinal I/R-induced intestinal and hepatic injury. In addition, the protective effect and possible associated mechanism of action of methanolic Phyllanthus amarus leaf extract (PA) against intestinal I/R-induced intestinal and hepatic injury were evaluated. Materials and methods: Fifty male Wistar rats were randomized into five groups (n = 10). The sham-operated group was received 0.5 mL of distilled water for seven days prior to the sham surgery, while the IIRI, febuxostat (FEB) + IIRI, low-dose PA (LDPA) + IIRI, and high-dose PA (HDPA) + IIRI groups underwent the I/R procedure. In addition to the procedure, IIRI, FEB + IIRI, LDPA + IIRI, and HDPA + IIRI received 0.5 mL of distilled water, 10 mg/kg of febuxostat, 200 mg/kg of PA, and 400 mg/kg of PA, respectively, for seven days prior to the I/R procedure. Results: Administration of methanolic Phyllanthus amarus leaf extracts attenuated the intestinal I/R-induced rise in intestinal and hepatic injury markers, malondialdehyde, nitric oxide, TNF-α, IL-6, and myeloperoxidase activities. In addition, Phyllanthus amarus ameliorated I/R-induced suppression of reduced glutathione, thiol and non-thiol proteins, and superoxide dismutase, catalase, and glutathione peroxidase activities in intestinal and hepatic tissues. These were coupled with the suppression of I/R-induced bacterial translocation, downregulation of I/R-induced activation of Bax/caspase 3 signaling, and improvement of I/R-induced distortion of intestinal and hepatic histoarchitecture by Phyllanthus amarus. Conclusion: Methanolic Phyllanthus amarus leaf extract protects against intestinal and hepatic injuries associated with intestinal I/R by suppressing oxidative-stress-mediated activation of Bax/caspase 3 signaling. The beneficial effects of Phyllanthus amarus may be ascribed to its constituent bioactive molecules, especially tannins, anthocyanin, alkaloids, and phenolics.


Subject(s)
Phyllanthus , Reperfusion Injury , Animals , Antioxidants , Caspase 3 , Febuxostat , Ischemia , Male , Methanol , Plant Extracts/pharmacology , Rats , Rats, Wistar , Reperfusion , Reperfusion Injury/drug therapy , Water , bcl-2-Associated X Protein
12.
Andrologia ; 53(2): e13951, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33400320

ABSTRACT

This study investigated the impact of the administration of HAART and anti-Koch's, singly and in combination, on sexual competence and birth statistics. Adult male Wistar rats were randomised into distilled water-treated control, HAART-treated, anti-Koch's-treated and HAART + anti-Koch's-treated groups. The 56-day oral treatment led to impaired sexual competence evident by significantly reduced motivation to mate, prolonged latencies of mount, intromissions, ejaculations and post-ejaculatory interval, as well as reduced frequencies of mount, intromissions and ejaculations. This was accompanied by significant reductions in penile erection reflex and penile grooming. HAART and anti-Koch's, when administered singly or in combination, also led to significant reductions in the circulatory follicle-stimulating hormone, luteinizing hormone, testosterone and intratesticular testosterone, but a significant rise in prolactin. Also, HAART and/or anti-Koch's significantly reduced sperm count, sperm motility, sperm viability and spermatozoa with normal morphology. Furthermore, HAART and anti-Koch's, separately or in combination, significantly lowered fertility capacity, litter size and litter weight and offspring survival. The deleterious effects of these drugs were more pronounced when combined. Findings of the present study revealed that HAART and/or anti-Koch's impair sexual competence via a testosterone-dependent hyperprolactinemia-mediated mechanism. These events are associated with reduced fertility capacity, poor sperm quality and lowered offspring survival.


Subject(s)
Antiretroviral Therapy, Highly Active , Sperm Motility , Adult , Animals , Antiretroviral Therapy, Highly Active/adverse effects , Follicle Stimulating Hormone , Humans , Luteinizing Hormone , Male , Rats , Rats, Wistar , Sperm Count , Spermatozoa , Testosterone
SELECTION OF CITATIONS
SEARCH DETAIL