Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.245
Filter
1.
Mater Today Bio ; 26: 101107, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38952538

ABSTRACT

Smart dressings integrated with bioelectronics have attracted considerable attention and become promising solutions for skin wound management. However, due to the mechanical distinction between human body and the interface of electronics, previous smart dressings often suffered obvious degradation in electrical performance when attached to the soft and curvilinear wound sites. Here, we report a stretchable dressing integrated with temperature and pH sensor for wound status monitoring, as well as an electrically controlled drug delivery system for infection treatment. The wound dressing was featured with the deployment of liquid metal for seamless connection between rigid electrical components and gold particle-based electrodes, achieving a stretchable soft-hard interface. Stretching tests showed that both the sensing system and drug delivery system exhibited good stretchability and long-term stable conductivity with the resistance change rate less than 6 % under 50 % strain. Animal experiments demonstrated that the smart dressing was capable of detecting bacterial infection via the biomarkers of temperature and pH value and the infection factors of wound were significantly improved with therapy through electrically controlled antibiotics releasing. This proof-of-concept prototype has potential to significantly improve management of the wound, especially those with dynamic strain.

2.
Magn Reson Med ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011598

ABSTRACT

PURPOSE: To mitigate the B0/B1 + sensitivity of velocity-selective inversion (VSI) pulse trains for velocity-selective arterial spin labeling (VSASL) by implementing adiabatic refocusing. This approach aims to achieve artifact-free VSI-based perfusion imaging through single-pair label-control subtractions, reducing the need for the currently required four-pair dynamic phase-cycling (DPC) technique when using a velocity-insensitive control. METHODS: We introduce a Fourier-transform VSI (FT-VSI) train that incorporates sinc-modulated hard excitation pulses with MLEV-8-modulated adiabatic hyperbolic secant refocusing pairs. We compare performance between this train and the standard composite refocusing train, including with and without DPC, for dual-module VSI VSASL. We evaluate (1) simulated velocity-selective profiles and subtraction fidelity across a broad B0/B1 + range, (2) subtraction fidelity in phantoms, and (3) image quality, artifact presence, and gray-matter perfusion heterogeneity (as measured by the spatial coefficient of variation) in healthy human subjects. RESULTS: Adiabatic refocusing significantly improves FT-VSI robustness to B0/B1 + inhomogeneity for a single label-control subtraction. Subtraction fidelity is dramatically improved in both simulation and phantoms compared with composite refocusing without DPC, and is similar compared with DPC methods. In humans, marked artifacts seen with the non-DPC composite refocusing approach are eliminated, corroborated by significantly reduced gray-matter heterogeneity (via lower spatial coefficient of variation values). CONCLUSION: A novel VSASL labeling train using adiabatic refocusing pulses for VSI was found to reduce artifacts related to B0/B1 + inhomogeneity, thereby providing an alternative to DPC and its associated limitations, which include increased vulnerability to physiological noise and motion, reduced functional MRI applicability, and suboptimal data censoring.

4.
Molecules ; 29(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38999078

ABSTRACT

Cesium doped WO3 (Cs-WO3) photocatalyst with high and stable oxidation activity was successfully synthesized by a one-step hydrothermal method using Cs2CO3 as the doped metal ion source and tungstic acid (H2WO4) as the tungsten source. A series of analytical characterization tools and oxygen precipitation activity tests were used to compare the effects of different additions of Cs2CO3 on the crystal structure and microscopic morphologies. The UV-visible diffuse reflectance spectra (DRS) of Cs-doped material exhibited a significant red shift in the absorption edge with new shoulders appearing at 440-520 nm. The formation of an oxygen vacancy was confirmed in Cs-WO3 by the EPR signal, which can effectively regulate the electronic structure of the catalyst surface and contribute to improving the activity of the oxygen evolution reaction (OER). The photocatalytic OER results showed that the Cs-WO3-0.1 exhibited the optimal oxygen precipitation activity, reaching 58.28 µmol at 6 h, which was greater than six times higher than that of WO3-0 (9.76 µmol). It can be attributed to the synergistic effect of the increase in the conduction band position of Cs-WO3-0.1 (0.11 V) and oxygen vacancies compared to WO3-0, which accelerate the electron conduction rate and slow down the rapid compounding of photogenerated electrons-holes, improving the water-catalytic oxygen precipitation activity of WO3.

6.
Adv Sci (Weinh) ; : e2400305, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962954

ABSTRACT

Acute kidney injury (AKI) signifies a sudden and prolonged decline in kidney function characterized by tubular cell death and interstitial inflammation. Small nucleolar RNAs (snoRNAs) play pivotal roles in oxidative stress and inflammation, and may play an important role in the AKI process, which remains elusive. an elevated expression of Snord3a is revealed in renal tubules in response to AKI and demonstrates that Snord3a deficiency alleviates renal injury in AKI mouse models. Notably, the deficiency of Snord3a exhibits a mitigating effect on the stimulator of interferon genes (STING)-associated ferroptosis phenotypes and the progression of tubular injury. Mechanistically, Snord3a is shown to regulate the STING signaling axis via promoting STING gene transcription; administration of Snord3a antisense oligonucleotides establishes a significant therapeutic advantage in AKI mouse models. Together, the findings elucidate the transcription regulation mechanism of STING and the crucial roles of the Snord3a-STING axis in ferroptosis during AKI, underscoring Snord3a as a potential prognostic and therapeutic target for AKI.

7.
Cancer Innov ; 3(4): e122, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38948253

ABSTRACT

Background: Non-small cell lung cancer (NSCLC), including the lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) subtypes, is a malignant tumor type with a poor 5-year survival rate. The identification of new powerful diagnostic biomarkers, prognostic biomarkers, and potential therapeutic targets in NSCLC is urgently required. Methods: The UCSC Xena, UALCAN, and GEO databases were used to screen and analyze differentially expressed genes, regulatory modes, and genetic/epigenetic alterations in NSCLC. The UCSC Xena database, GEO database, tissue microarray, and immunohistochemistry staining analyses were used to evaluate the diagnostic and prognostic values. Gain-of-function assays were performed to examine the roles. The ESTIMATE, TIMER, Linked Omics, STRING, and DAVID algorithms were used to analyze potential molecular mechanisms. Results: NR3C2 was identified as a potentially important molecule in NSCLC. NR3C2 is expressed at low levels in NSCLC, LUAD, and LUSC tissues, which is significantly related to the clinical indexes of these patients. Receiver operating characteristic curve analysis suggests that the altered NR3C2 expression patterns have diagnostic value in NSCLC, LUAD, and especially LUSC patients. Decreased NR3C2 expression levels can help predict poor prognosis in NSCLC and LUAD patients but not in LUSC patients. These results have been confirmed both with database analysis and real-world clinical samples on a tissue microarray. Copy number variation contributes to low NR3C2 expression levels in NSCLC and LUAD, while promoter DNA methylation is involved in its downregulation in LUSC. Two NR3C2 promoter methylation sites have high sensitivity and specificity for LUSC diagnosis with clinical application potential. NR3C2 may be a key participant in NSCLC development and progression and is closely associated with the tumor microenvironment and immune cell infiltration. NR3C2 co-expressed genes are involved in many cancer-related signaling pathways, further supporting a potentially significant role of NR3C2 in NSCLC. Conclusions: NR3C2 is a novel potential diagnostic and prognostic biomarker and therapeutic target in NSCLC.

8.
Hum Brain Mapp ; 45(11): e26790, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39037119

ABSTRACT

Brain glymphatic dysfunction is critical in neurodegenerative processes. While animal studies have provided substantial insights, understandings in humans remains limited. Recent attention has focused on the non-invasive evaluation of brain glymphatic function. However, its association with brain parenchymal lesions in large-scale population remains under-investigated. In this cross-sectional analysis of 1030 participants (57.14 ± 9.34 years, 37.18% males) from the Shunyi cohort, we developed an automated pipeline to calculate diffusion-weighted image analysis along the perivascular space (ALPS), with a lower ALPS value indicating worse glymphatic function. The automated ALPS showed high consistency with the manual calculation of this index (ICC = 0.81, 95% CI: 0.662-0.898). We found that those with older age and male sex had lower automated ALPS values (ß = -0.051, SE = 0.004, p < .001, per 10 years, and ß = -0.036, SE = 0.008, p < .001, respectively). White matter hyperintensity (ß = -2.458, SE = 0.175, p < .001) and presence of lacunes (OR = 0.004, 95% CI < 0.002-0.016, p < .001) were significantly correlated with decreased ALPS. The brain parenchymal and hippocampal fractions were significantly associated with decreased ALPS (ß = 0.067, SE = 0.007, p < .001 and ß = 0.040, SE = 0.014, p = .006, respectively) independent of white matter hyperintensity. Our research implies that the automated ALPS index is potentially a valuable imaging marker for the glymphatic system, deepening our understanding of glymphatic dysfunction.


Subject(s)
Diffusion Magnetic Resonance Imaging , Glymphatic System , Humans , Male , Female , Glymphatic System/diagnostic imaging , Glymphatic System/pathology , Glymphatic System/physiopathology , Middle Aged , Cross-Sectional Studies , Aged , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , White Matter/diagnostic imaging , White Matter/pathology , Image Processing, Computer-Assisted/methods , Adult , Cohort Studies
10.
Phytochemistry ; 225: 114192, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38901624

ABSTRACT

Meliasanines A-L, twelve previously unreported tirucallane-type triterpenoids, together with fifteen known ones, have been isolated from the stem bark of Melia toosendan. Their structures and absolute configurations were determined based on HRESIMS, and NMR, combined with calculated ECD and single-crystal X-ray diffraction analyses. Subsequently, all compounds except 10 were evaluated for their inhibitory effect on the production of nitric oxide induced by lipopolysaccharide in RAW264.7 macrophage cells. The results indicated that seven compounds (1, 13, 14, 16, 20, 22, and 23) exhibited significant NO inhibitory effects, with IC50 values ranging from 1.35 to 5.93 µM, which were more effective than the positive control indomethacin (IC50 = 13.18 µM). Moreover, the corresponding results of Western blot analysis revealed that meliasanine A (1) can significantly suppress the protein expression of inducible nitric oxide synthase and cyclooxygenase 2 in a concentration-dependent manner. The mechanism study suggested that meliasanine A exerts an anti-inflammatory effect via the nuclear factor-κB signaling pathway by suppressing phosphorylation of P65 and IκBα.


Subject(s)
Anti-Inflammatory Agents , Lipopolysaccharides , Melia , NF-kappa B , Nitric Oxide , Signal Transduction , Triterpenes , Mice , Animals , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/isolation & purification , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , RAW 264.7 Cells , Signal Transduction/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Nitric Oxide/biosynthesis , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/metabolism , Molecular Structure , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Melia/chemistry , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/antagonists & inhibitors , Plant Bark/chemistry , Cyclooxygenase 2/metabolism , Dose-Response Relationship, Drug , Structure-Activity Relationship
11.
Sci Adv ; 10(24): eadn6331, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38865451

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are antimicrobial T cells abundant in the gut, but mechanisms for their migration into tissues during inflammation are poorly understood. Here, we used acute pediatric appendicitis (APA), a model of acute intestinal inflammation, to examine these migration mechanisms. MAIT cells were lower in numbers in circulation of patients with APA but were enriched in the inflamed appendix with increased production of proinflammatory cytokines. Using the patient-derived appendix organoid (PDAO) model, we found that circulating MAIT cells treated with inflammatory cytokines elevated in APA up-regulated chemokine receptors, including CCR1, CCR3, and CCR4. They exhibited enhanced infiltration of Escherichia coli-pulsed PDAO in a CCR1-, CCR2-, and CCR4-dependent manner. Close interactions of MAIT cells with infected organoids led to the PDAO structural destruction and death. These findings reveal a previously unidentified mechanism of MAIT cell tissue homing, their participation in tissue damage in APA, and their intricate relationship with mucosal tissues during acute intestinal inflammation in humans.


Subject(s)
Appendicitis , Inflammation , Mucosal-Associated Invariant T Cells , Humans , Appendicitis/pathology , Appendicitis/immunology , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Inflammation/pathology , Inflammation/immunology , Inflammation/metabolism , Cytokines/metabolism , Acute Disease , Lymphocyte Activation/immunology , Organoids , Cell Movement , Child , Male , Female , Intestinal Mucosa/pathology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Appendix/pathology , Appendix/immunology
12.
Article in English | MEDLINE | ID: mdl-38695863

ABSTRACT

Human breast milk contains lactic acid bacteria (LAB), which have an important influence on the composition of the intestinal microbia of infants. In this study, one strain of an α-hemolytic species of the genus Streptococcus, IMAU99199T, isolated from the breast milk of a healthy nursing mother in Hohhot city PR China, was studied to characterise its taxonomic status using phenotypic and molecular taxonomic methods. The results indicated that it represented a member of the mitis-suis clade, pneumoniae subclade of the genus Streptococcus. It is a Gram-stain-positive, catalase-negative and oxidase-negative bacterium, and the cells are globular, paired or arranged in short chains. The results of a phylogenetic analysis of its 16S rRNA gene and two housekeeping genes (gyrB and rpoB) placed it in the genus Streptococcus. A phylogenetic tree based on 135 single-copy genes sequences indicated that IMAU99199T formed a closely related branch well separated from 'Streptococcus humanilactis' IMAU99125, 'Streptococcus bouchesdurhonensis' Marseille Q6994, Streptococcus mitis NCTC 12261T, 'Streptococcus vulneris' DM3B3, Streptococcus toyakuensis TP1632T, Streptococcus pseudopneumoniae ATCC BAA-960T and Streptococcus pneumoniae NCTC 7465T. IMAU99199T and 'S. humanilactis' IMAU99125 had the highest average nucleotide identity (93.7 %) and digital DNA-DNA hybridisation (55.3 %) values, which were below the accepted thresholds for novel species. The DNA G+C content of the draft genome of IMAU99199T was 39.8 %. The main cellular fatty acids components of IMAU99199T were C16 : 0 and C16 : 1ω7. It grew at a temperature range of 25-45 °C (the optimum growth temperature was 37 °C) and a pH range of 5.0-8.0 (the optimum growth pH was 7.0). These data indicate that strain IMAU99199T represents a novel species in the genus Streptococcus, for which the name Streptococcus hohhotensis sp. nov. is proposed. The type strain is IMAU99199T (=GDMCC 1.1874T=KCTC 21155T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Milk, Human , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Streptococcus , RNA, Ribosomal, 16S/genetics , Humans , Female , China , DNA, Bacterial/genetics , Milk, Human/microbiology , Streptococcus/genetics , Streptococcus/isolation & purification , Streptococcus/classification , Fatty Acids/analysis , Nucleic Acid Hybridization , Genes, Bacterial
13.
Phytomedicine ; 130: 155659, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38759318

ABSTRACT

BACKGROUND: JinLiDa granules (JLD) is a traditional Chinese medicine (TCM) used to treat type 2 diabetes mellitus with Qi and Yin deficiency. Clinical evidence has shown that JLD can alleviate diabetic cardiomyopathy, but the exact mechanism is not yet clear. PURPOSE: The purpose of this study was to examine the potential role and mechanism of JLD in the treatment of diabetic cardiomyopathy through network pharmacological analysis and basic experiments. METHODS: The targets of JLD associated with diabetic cardiomyopathy were examined by network pharmacology. Protein interaction analysis was performed on the targets, and the associated pathways were searched by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Diabetic mice were treated with low or high doses of JLD by gavage, and AC16 and H9C2 cardiomyocytes exposed to high-glucose conditions were treated with JLD. The analysis results were verified by various experimental techniques to examine molecular mechanisms. RESULTS: Network pharmacological analysis revealed that JLD acted on the tumor suppressor p53 (TP53) during inflammation and fibrosis associated with diabetic cardiomyopathy. The results of basic experiments showed that after JLD treatment, ventricular wall thickening in diabetic mouse hearts was attenuated, cardiac hypertrophy and myocardial inflammation were alleviated, and the expression of cardiac hypertrophy- and inflammation-related factors in cardiomyocytes exposed to a high-glucose environment was decreased. Cardiomyocyte morphology also improved after JLD treatment. TP53 expression and the tumor necrosis factor (TNF) and transforming growth factor beta-1 (TGFß1) signaling pathways were significantly altered, and inhibiting TP53 expression effectively alleviated the activation of the TNF and TGFß1 signaling pathways under high glucose conditions. Overexpression of TP53 activated these signaling pathways. CONCLUSIONS: JLD acted on TP53 to regulate the TNF and TGFß1 signaling pathways, effectively alleviating cardiomyocyte hypertrophy and inflammation in high glucose and diabetic conditions. Our study provides a solid foundation for the future treatment of diabetic cardiomyopathy with JLD.


Subject(s)
Cardiomegaly , Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Drugs, Chinese Herbal , Transforming Growth Factor beta1 , Tumor Suppressor Protein p53 , Animals , Diabetic Cardiomyopathies/drug therapy , Drugs, Chinese Herbal/pharmacology , Tumor Suppressor Protein p53/metabolism , Cardiomegaly/drug therapy , Mice , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Male , Transforming Growth Factor beta1/metabolism , Myocytes, Cardiac/drug effects , Mice, Inbred C57BL , Inflammation/drug therapy , Fibrosis/drug therapy , Cell Line , Rats , Tumor Necrosis Factor-alpha/metabolism , Network Pharmacology , Signal Transduction/drug effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications
14.
J Clin Invest ; 134(13)2024 May 14.
Article in English | MEDLINE | ID: mdl-38743486

ABSTRACT

Tumor cells are known to undergo considerable metabolic reprogramming to meet their unique demands and drive tumor growth. At the same time, this reprogramming may come at a cost with resultant metabolic vulnerabilities. The small molecule l-2-hydroxyglutarate (l-2HG) is elevated in the most common histology of renal cancer. Similarly to other oncometabolites, l-2HG has the potential to profoundly impact gene expression. Here, we demonstrate that l-2HG remodels amino acid metabolism in renal cancer cells through combined effects on histone methylation and RNA N6-methyladenosine. The combined effects of l-2HG result in a metabolic liability that renders tumors cells reliant on exogenous serine to support proliferation, redox homeostasis, and tumor growth. In concert with these data, high-l-2HG kidney cancers demonstrate reduced expression of multiple serine biosynthetic enzymes. Collectively, our data indicate that high-l-2HG renal tumors could be specifically targeted by strategies that limit serine availability to tumors.


Subject(s)
Glutarates , Kidney Neoplasms , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Glutarates/metabolism , Humans , Animals , Mice , Cell Line, Tumor , Serine/metabolism , Epigenome , Transcriptome , Histones/metabolism , Histones/genetics , Gene Expression Regulation, Neoplastic , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Epigenesis, Genetic , Adenosine/analogs & derivatives
15.
Nanomicro Lett ; 16(1): 207, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819753

ABSTRACT

Direct regeneration method has been widely concerned by researchers in the field of battery recycling because of its advantages of in situ regeneration, short process and less pollutant emission. In this review, we firstly analyze the primary causes for the failure of three representative battery cathodes (lithium iron phosphate, layered lithium transition metal oxide and lithium cobalt oxide), targeting at illustrating their underlying regeneration mechanism and applicability. Efficient stripping of material from the collector to obtain pure cathode material has become a first challenge in recycling, for which we report several pretreatment methods currently available for subsequent regeneration processes. We review and discuss emphatically the research progress of five direct regeneration methods, including solid-state sintering, hydrothermal, eutectic molten salt, electrochemical and chemical lithiation methods. Finally, the application of direct regeneration technology in production practice is introduced, the problems exposed at the early stage of the industrialization of direct regeneration technology are revealed, and the prospect of future large-scale commercial production is proposed. It is hoped that this review will give readers a comprehensive and basic understanding of direct regeneration methods for used lithium-ion batteries and promote the industrial application of direct regeneration technology.

16.
J Am Heart Assoc ; 13(10): e034145, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38761086

ABSTRACT

BACKGROUND: This study aims to investigate the temporal and spatial patterns of structural brain injury related to deep medullary veins (DMVs) damage. METHODS AND RESULTS: This is a longitudinal analysis of the population-based Shunyi cohort study. Baseline DMVs numbers were identified on susceptibility-weighted imaging. We assessed vertex-wise cortex maps and diffusion maps at both baseline and follow-up using FSL software and the longitudinal FreeSurfer analysis suite. We performed statistical analysis of global measurements and voxel/vertex-wise analysis to explore the relationship between DMVs number and brain structural measurements. A total of 977 participants were included in the baseline, of whom 544 completed the follow-up magnetic resonance imaging (age 54.97±7.83 years, 32% men, mean interval 5.56±0.47 years). A lower number of DMVs was associated with a faster disruption of white matter microstructural integrity, presented by increased mean diffusivity and radial diffusion (ß=0.0001 and SE=0.0001 for both, P=0.04 and 0.03, respectively), in extensive deep white matter (threshold-free cluster enhancement P<0.05, adjusted for age and sex). Of particular interest, we found a bidirectional trend association between DMVs number and change in brain volumes. Specifically, participants with mild DMVs disruption showed greater cortical enlargement, whereas those with severe disruption exhibited more significant brain atrophy, primarily involving clusters in the frontal and parietal lobes (multiple comparison corrected P<0.05, adjusted for age, sex, and total intracranial volume). CONCLUSIONS: Our findings posed the dynamic pattern of brain parenchymal lesions related to DMVs injury, shedding light on the interactions and chronological roles of various pathological mechanisms.


Subject(s)
Cerebral Veins , Humans , Male , Female , Middle Aged , Cerebral Veins/diagnostic imaging , Cerebral Veins/pathology , Longitudinal Studies , China/epidemiology , White Matter/diagnostic imaging , White Matter/pathology , Adult , Aged
17.
Brain Res Bull ; 213: 110981, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777132

ABSTRACT

INTRODUCTION: The medial prefrontal cortex (mPFC) forms output pathways through projection neurons, inversely receiving adjacent and long-range inputs from other brain regions. However, how afferent neurons of mPFC are affected by chronic stress needs to be clarified. In this study, the effects of chronic restraint stress (CRS) on the distribution density of mPFC dendrites/dendritic spines and the projections from the cortex and subcortical brain regions to the mPFC were investigated. METHODS: In the present study, C57BL/6 J transgenic (Thy1-YFP-H) mice were subjected to CRS to establish an animal model of depression. The infralimbic (IL) of mPFC was selected as the injection site of retrograde AAV using stereotactic technique. The effects of CRS on dendrites/dendritic spines and afferent neurons of the mPFC IL were investigaed by quantitatively assessing the distribution density of green fluorescent (YFP) positive dendrites/dendritic spines and red fluorescent (retrograde AAV recombinant protein) positive neurons, respectively. RESULTS: The results revealed that retrograde tracing virus labeled neurons were widely distributed in ipsilateral and contralateral cingulate cortex (Cg1), second cingulate cortex (Cg2), prelimbic cortex (PrL), infralimbic cortex, medial orbital cortex (MO), and dorsal peduncular cortex (DP). The effects of CRS on the distribution density of mPFC red fluorescence positive neurons exhibited regional differences, ranging from rostral to caudal or from top to bottom. Simultaneously, CRS resulted a decrease in the distribution density of basal, proximal and distal dendrites, as well as an increase in the loss of dendritic spines of the distal dendrites in the IL of mPFC. Furthermore, varying degrees of red retrograde tracing virus fluorescence signals were observed in other cortices, amygdala, hippocampus, septum/basal forebrain, hypothalamus, thalamus, mesencephalon, and brainstem in both ipsilateral and contralateral brain. CRS significantly reduced the distribution density of red fluorescence positive neurons in other cortices, hippocampus, septum/basal forebrain, hypothalamus, and thalamus. Conversely, CRS significantly increased the distribution density of red fluorescence positive neurons in amygdala. CONCLUSION: Our results suggest a possible mechanism that CRS leads to disturbances in synaptic plasticity by affecting multiple inputs to the mPFC, which is characterized by a decrease in the distribution density of dendrites/dendritic spines in the IL of mPFC and a reduction in input neurons of multiple cortices to the IL of mPFC as well as an increase in input neurons of amygdala to the IL of mPFC, ultimately causing depression-like behaviors.


Subject(s)
Depression , Mice, Inbred C57BL , Mice, Transgenic , Prefrontal Cortex , Restraint, Physical , Stress, Psychological , Animals , Prefrontal Cortex/pathology , Prefrontal Cortex/metabolism , Stress, Psychological/pathology , Stress, Psychological/metabolism , Mice , Depression/pathology , Male , Dendritic Spines/pathology , Disease Models, Animal , Afferent Pathways , Dendrites/pathology , Dendrites/metabolism , Neurons, Afferent/pathology , Neurons, Afferent/metabolism , Brain/pathology , Brain/metabolism
18.
Ecotoxicol Environ Saf ; 279: 116461, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38763051

ABSTRACT

Polystyrene nanoplastics (PS-NPs) have been reported to accumulate in the testes and constitute a new threat to reproductive health. However, the exact effects of PS-NPs exposure on testicular cells and the underlying mechanisms remain largely unknown. The C57BL/6 male mice were orally administered with PS-NPs (80 nm) at different dosages (0, 10, and 40 mg/kg/day) for 60 days, and GC-1 cells were treated with PS-NPs in this study. Enlarged seminiferous tubule lumens and a loose and vacuolated layer of spermatogenic cells were observed in PS-NPs-exposed mice. Spermatogenic cells which may be one of the target cells for this reproductive damage, were decreased in the mice from PS-NPs group. PS-NPs caused spermatogenic cells to undergo senescence, manifested as elevated SA-ß-galactosidase activity and activated senescence-related signaling p53-p21/Rb-p16 pathways, and induced cell cycle arrest. Mechanistically, Gene Ontology (GO) enrichment suggested the key role of reactive oxygen species (ROS) in PS-NPs-induced spermatogenic cell senescence, and this result was confirmed by measuring ROS levels. Moreover, ROS inhibition partially attenuated the senescence phenotype of spermatogenic cells and DNA damage. Using the male health atlas (MHA) database, Sirt1 was filtrated as the critical molecule in the regulation of testicular senescence. PS-NPs induced overexpression of the main ROS generator Nox2, downregulated Sirt1, increased p53 and acetylated p53 in vivo and in vitro, whereas these disturbances were partially restored by pterostilbene. In addition, pterostilbene intervention significantly alleviated the PS-NPs-induced spermatogenic cell senescence and attenuated ROS burst. Collectively, our study reveals that PS-NPs exposure can trigger spermatogenic cell senescence mediated by p53-p21/Rb-p16 signaling by regulating the Sirt1/ROS axis. Importantly, pterostilbene intervention may be a promising strategy to alleviate this damage.


Subject(s)
Cellular Senescence , Mice, Inbred C57BL , Polystyrenes , Reactive Oxygen Species , Sirtuin 1 , Animals , Male , Sirtuin 1/metabolism , Reactive Oxygen Species/metabolism , Cellular Senescence/drug effects , Mice , Polystyrenes/toxicity , Testis/drug effects , Testis/pathology , Spermatogenesis/drug effects , Nanoparticles/toxicity , DNA Damage , Signal Transduction/drug effects
19.
Front Psychiatry ; 15: 1362288, 2024.
Article in English | MEDLINE | ID: mdl-38726381

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that encompasses a range of symptoms including difficulties in verbal communication, social interaction, limited interests, and repetitive behaviors. Neuroplasticity refers to the structural and functional changes that occur in the nervous system to adapt and respond to changes in the external environment. In simpler terms, it is the brain's ability to learn and adapt to new environments. However, individuals with ASD exhibit abnormal neuroplasticity, which impacts information processing, sensory processing, and social cognition, leading to the manifestation of corresponding symptoms. This paper aims to review the current research progress on ASD neuroplasticity, focusing on genetics, environment, neural pathways, neuroinflammation, and immunity. The findings will provide a theoretical foundation and insights for intervention and treatment in pediatric fields related to ASD.

20.
Small ; : e2401334, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804884

ABSTRACT

Lung cancer, a highly prevalent and lethal form of cancer, is often associated with oxidative stress. Photodynamic therapy (PDT) has emerged as a promising alternative therapeutic tool in cancer treatments, but its efficacy is closely correlated to the photosensitizers generating reactive oxygen species (ROS) and the antioxidant capacity of tumor cells. In particular, glutathione (GSH) can reduce the ROS and thus compromise PDT efficacy. In this study, a GSH-responsive near-infrared photosensitizer (TBPPN) based on aggregation-induced emission for real-time monitoring of GSH levels and enhanced PDT for lung cancer treatment is developed. The strategic design of TBPPN, consisting of a donor-acceptor structure and incorporation of dinitrobenzene, enables dual functionality by not only the fluorescence being activated by GSH but also depleting GSH to enhance the cytotoxic effect of PDT. TBPPN demonstrates synergistic PDT efficacy in vitro against A549 lung cancer cells by specifically targeting different cellular compartments and depleting intracellular GSH. In vivo studies further confirm that TBPPN can effectively inhibit tumor growth in a mouse model with lung cancer, highlighting its potential as an integrated agent for the diagnosis and treatment of lung cancer. This approach enhances the effectiveness of PDT for lung cancer and deserves further exploration of its potential for clinical application.

SELECTION OF CITATIONS
SEARCH DETAIL