Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 701
Filter
1.
Int J Biol Macromol ; : 134005, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053819

ABSTRACT

With the increasing consumption of organic solvents in chemical and pharmaceutical industries, the environment pollution of volatile organic compounds (VOCs) has become an urgent problem. Therefore, the rapid-visual detection method is of great significance in the analysis of VOCs. Based on the fluorescence quenching/enhancement mechanism of carbon quantum dots (CQDs), with the help of carboxymethyl cellulose membrane with porous and large specific surface area structure, a series of green CQDs@carboxymethyl cellulose composite film (CQDs@CMC composite film) was prepared in this study. In the typical-targeted pollutants (toluene) detection application, a fluorescence spectroscopy method was established which could achieve the high sensitivity and strong specificity detection. The mainly conclusions were as follows: The fluorescence spectrometric detection method for toluene: A kind of hydrophobic Lmi/Bet CQDs@CMC composite film was prepared and characterized with imidazole/betaine CQDs and porous carboxymethyl cellulose composite film as raw materials. The toluene detection performance was studied, and the recognition mechanism was explored. The results showed that toluene enhanced the fluorescence of Lmi/Bet CQDs@CMC composite film. The fluorescence intensity of composite films was proportional to toluene concentration when the toluene concentration ranged from 200 to 2200 mg/L. The detection limit of toluene was 1.169 mg/L, which provides a theoretical basis for the detection of toluene by fluorescence spectrometry.

2.
Int J Biol Macromol ; 276(Pt 1): 133489, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964679

ABSTRACT

Indole-based bis-acylhydrazone compounds can inhibit the activity of α-glucosidase and control the concentration of blood glucose. In this paper, the characteristics of three indole-based bis-acylhydrazone compounds with different inhibitory activities of α-glucosidase as well as the interaction with α-glucosidase were studied by experiments and computational simulation techniques. Enzyme kinetic and spectral experiments showed that the indole-based bis-acylhydrazone compounds were able to inhibit enzyme activity through mixed inhibition dominated by competitive inhibition, and during the binding reaction, indole-based bis-acylhydrazone compounds can quench the intrinsic fluorescence of α-glucosidase through static quenching and an aggregation of the indole-based bis-acylhydrazone with α-glucosidase produces a stable complex with a molar ratio of 1:1, and the combination of indole-based bis-acylhydrazone compounds could lead to slight change in the conformation of α-glucosidase. The theoretical simulation demonstrated that the stability of the complex systems was positively correlated with the inhibitory activity of indole-based bis-acylhydrazone compounds, and the indole-based bis-acylhydrazone compounds occupied the active site in the multi-ligand system, resulting in a significant decrease in the binding ability of starch to active amino acids. These results suggested that indole-based bis-acylhydrazone compound was expected to be a new type of α-glucosidase inhibitor.

3.
Technol Cancer Res Treat ; 23: 15330338241261615, 2024.
Article in English | MEDLINE | ID: mdl-38887096

ABSTRACT

This study aimed to investigate the role of miR-558 in tumor angiogenesis by targeting heparinase (HPSE) in tongue squamous cell carcinoma (TSCC)-derived exosomes. In the present study, the role of exosome miR-558 in angiogenesis in vitro and in vivo was investigated by cell proliferation, migration, tube formation, subcutaneous tumor formation in mice, and in vivo Matrigel plug assay. The target genes of miR-558 were detected by means of dual luciferase assay. It was found that TSCC cells secrete miR-558 into the extracellular environment, with exosome as the carrier. Human umbilical vein endothelial cells (HUVEC) ingested exosomes, which not only increased the expression level of miR-558, but also enhanced their proliferation, migration, and tube formation functions. In vivo Matrigel plug assay demonstrated that TSCC cell-derived exosome miR-558 promoted neovascularization in vivo. Compared with negative control cells, TSCC cells overexpressing miR-558 formed subcutaneous tumors in nude mice, with larger volume, heavier mass, and more vascularization. Dual luciferase assay confirmed that HPSE was the direct target gene regulated by miR-558. HPSE promoted the proliferation, migration, and tube formation of HUVECs, and the knockout of HPSE could downregulate the pro-angiogenic effect of miR-558. In summary, miR-558 in TSCC exosomes promotes the proliferation, migration, and tube formation of HUVECs by targeting HPSE, and enhancing tumor angiogenesis.


Subject(s)
Cell Movement , Cell Proliferation , Exosomes , Gene Expression Regulation, Neoplastic , Heparin Lyase , MicroRNAs , Neovascularization, Pathologic , Tongue Neoplasms , Humans , Animals , MicroRNAs/genetics , Exosomes/metabolism , Exosomes/genetics , Tongue Neoplasms/pathology , Tongue Neoplasms/genetics , Tongue Neoplasms/metabolism , Mice , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Cell Movement/genetics , Cell Line, Tumor , Heparin Lyase/metabolism , Heparin Lyase/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Human Umbilical Vein Endothelial Cells , Disease Models, Animal , Xenograft Model Antitumor Assays , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Angiogenesis
4.
Acta Pharm Sin B ; 14(6): 2716-2731, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828148

ABSTRACT

Lipogenesis is often highly upregulated in breast cancer brain metastases to adapt to intracranial low lipid microenvironments. Lipase inhibitors hold therapeutic potential but their intra-tumoral distribution is often blocked by the blood‒tumor barrier (BTB). BTB activates its Wnt signaling to maintain barrier properties, e.g., Mfsd2a-mediated BTB low transcytosis. Here, we reported VCAM-1-targeting nano-wogonin (W@V-NPs) as an adjuvant of nano-orlistat (O@V-NPs) to intensify drug delivery and inhibit lipogenesis of brain metastases. W@V-NPs were proven to be able to inactivate BTB Wnt signaling, downregulate BTB Mfsd2a, accelerate BTB vesicular transport, and enhance tumor accumulation of O@V-NPs. With the ability to specifically kill cancer cells in a lipid-deprived environment with IC50 at 48 ng/mL, W@V-NPs plus O@V-NPs inhibited the progression of brain metastases with prolonged survival of model mice. The combination did not induce brain edema, cognitive impairment, and systemic toxicity in healthy mice. Targeting Wnt signaling could safely modulate the BTB to improve drug delivery and metabolic therapy against brain metastases.

5.
Biomed Pharmacother ; 176: 116855, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850651

ABSTRACT

Nano-particles demonstrating excellent anticancer properties have gradually found application in cancer therapy. However, their widespread use is impeded by their potential toxicity, high cost, and the complexity of the preparation process. In this study, we achieved exosome-like Centella asiatica-derived nanovesicles (ADNVs) through a straightforward juicing and high-speed centrifugation process. We employed transmission electron microscopy and nanoparticle flow cytometry to characterize the morphology, diameter, and stability of the ADNVs. We evaluated the in vitro anticancer effects of ADNVs using Cell Counting Kit-8 and apoptosis assays. Through sequencing and bicinchoninic acid protein analysis, we discovered the abundant presence of proteins and microRNAs in ADNVs. These microRNAs can target various diseases such as cancer and infection. Furthermore, we demonstrated the effective internalization of ADNVs by HepG2 cells, resulting in an increase in reactive oxygen species levels, mitochondrial damage, cell cycle arrest at the G1 phase, and apoptosis. Finally, we analyzed changes in cellular metabolites post-treatment using cell metabolomics techniques. Our findings indicated that ADNVs primarily influence metabolic pathways such as amino acid metabolism and lipid biosynthesis, which are closely associated with HepG2 treatment. Our results demonstrate the potential utility of ADNVs as anticancer agents.


Subject(s)
Apoptosis , Cell Proliferation , Centella , Exosomes , Metabolomics , Nanoparticles , Plant Extracts , Triterpenes , Humans , Hep G2 Cells , Centella/chemistry , Cell Proliferation/drug effects , Exosomes/metabolism , Exosomes/drug effects , Plant Extracts/pharmacology , Apoptosis/drug effects , Triterpenes/pharmacology , Triterpenes/chemistry , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics
6.
J Ethnopharmacol ; 334: 118463, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908493

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Wutou Decoction (WTD) is a classic traditional Chinese medicine formula, which has shown clinical efficacy in treating rheumatoid arthritis (RA). The Treg stability and Th17/Treg imbalance is an important immunological mechanism in RA progression. Whether WTD regulates CD4+ T cell subsets has not been thoroughly investigated yet. AIM OF THE STUDY: This study aimed to explore the potential role and mechanisms of WTD in regulating the diminished stability of Treg cells and the imbalance of CD4+ T cell subsets via in vivo and in vitro experiments. MATERIALS AND METHODS: Firstly, the therapeutic effects of WTD on the collagen-induced arthritis (CIA) mouse and its potential regulatory function on CD4+ T cell subsets were evaluated in vivo. Animal specimens were collected after 31 days of treatment with WTD. The anti-arthritic and anti-inflammatory effects of WTD were assessed through arthritis scoring, body weight, spleen index, serum IL-6 levels, and micro-PET/CT imaging. Gene enrichment analysis was performed to evaluate the activation T cell-related signaling pathway. Flow cytometry was used to determine the proportions of CD4+ T cell subsets in vitro and in vitro. Additionally, ELISA was used to assess the secretion of IL-10 and TGF-ß by Treg cells under inflammatory conditions. The suppressive function of Treg cells on cell proliferation under inflammatory conditions was examined using CFSE labeling. Immunofluorescence staining was performed to detect the phosphorylation levels of STAT3 in CD4+ T cells from mouse spleen tissues. Western blotting was used to evaluate the phosphorylation levels of JAK2/STAT3 in Treg cells. RESULTS: WTD significantly alleviated joint inflammation in CIA mice. WTD reduced serum IL-6 levels in CIA mice, improved their body weight and spleen index. WTD treatment inhibited the activation of CD4+ T cell subgroup-related signaling in the joint tissues of CIA mice. In vitro and in vitro experiments showed that WTD increased the proportion of Treg cells and decreased the proportion of Th17 cells in CIA mice spleen. Furthermore, WTD promoted the secretion of IL-10 and TGF-ß by Treg cells and enhanced the inhibitory capacity of Treg cells on cell proliferation under inflammatory conditions. Immunofluorescence detected decreased STAT3 phosphorylation levels in CD4+ T cells from CIA mice spleen, while western blotting revealed a decrease in JAK2/STAT3 phosphorylation levels in Treg cells in vitro. CONCLUSIONS: Inhibiting JAK2/STAT3 phosphorylation is a potential mechanism through which WTD improves Treg cell stability, balances CD4+ T cell subsets, and attenuates RA joint inflammation.

7.
Front Oncol ; 14: 1394552, 2024.
Article in English | MEDLINE | ID: mdl-38835385

ABSTRACT

Background: Pheochromocytoma is one of the most hereditary human tumors with at least 20 susceptible genes undergoing germline and somatic mutations, and other mutations less than 1% -2%. In recent years, other rare mutations have gradually been discovered to be possibly related to the pathogenesis and metastasis of pheochromocytoma. Most patients with pheochromocytoma experience common symptoms like headaches, palpitations, and sweating, while some may have less common symptoms. The diversity of symptoms, genetic mutations, and limited treatment options make management challenging. Case presentation: A 53-year-old woman was hospitalized after experiencing episodic epigastric pain for one month. A mass was found in her right adrenal gland and she underwent robot-assisted laparoscopic surgery, revealing a pheochromocytoma. At the 16-month follow-up, multiple metastatic lesions consistent with metastatic pheochromocytoma were found. A germline mutation in the dihydrolipoamide succinyltransferase (DLST) gene (c.330 + 14A>G) was detected, and despite trying chemotherapy and adjuvant therapy, the patient had a limited response with an overall survival of 27 months. Conclusions: DLST mutation is one of the rare pheochromocytoma-related mutated genes, and genetic sequencing is crucial for effective clinical management.

8.
Phytomedicine ; 129: 155656, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723529

ABSTRACT

BACKGROUND: Gemcitabine is the first-line chemotherapy drug that can easily cause chemotherapy resistance. Huaier is a traditional Chinese medicine and shows an antitumor effect in pancreatic cancer, but whether it can enhance the gemcitabine chemotherapeutic response and the potential mechanism remain unknown. PURPOSE: This study was performed to explore the effect of Huaier in promoting the tumor-killing effect of gemcitabine and elucidate the possible mechanism in pancreatic cancer. METHODS: Cell Counting Kit-8 assays and colony formation assays were used to detect proliferation after different treatments. Protein coimmunoprecipitation was applied to demonstrate protein interactions. Nuclear protein extraction and immunofluorescence were used to confirm the intracellular localization of the proteins. Western blotting was performed to detect cell proliferation-related protein expression or cancer stem cell-associated protein expression. Sphere formation assays and flow cytometry were used to assess the stemness of pancreatic cancer cells. The in vivo xenograft model was used to confirm the inhibitory effect under physiological conditions, and immunohistochemistry was used to detect protein expression. RESULTS: Huaier suppressed the proliferation and stem cell-like properties of pancreatic cancer cells. We found that Huaier suppressed the expression of forkhead box protein M1 (FoxM1). In addition, Huaier inhibited FoxM1 function by blocking its nuclear translocation. Treatment with Huaier reversed the stemness induced by gemcitabine in a FoxM1-dependent manner. Furthermore, we verified the above results by an in vivo study, which reached the same conclusion as those in vitro. CONCLUSION: Overall, this study illustrates that Huaier augments the tumor-killing effect of gemcitabine through suppressing the stemness induced by gemcitabine in a FoxM1-dependent way. These results indicate that Huaier can be applied to overcome gemcitabine resistance.


Subject(s)
Cell Proliferation , Deoxycytidine , Forkhead Box Protein M1 , Gemcitabine , Mice, Nude , Neoplastic Stem Cells , Pancreatic Neoplasms , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Forkhead Box Protein M1/metabolism , Humans , Animals , Pancreatic Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Mice , Mice, Inbred BALB C , Xenograft Model Antitumor Assays , Drugs, Chinese Herbal/pharmacology , Complex Mixtures , Trametes
10.
Exp Cell Res ; 439(1): 114090, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38740167

ABSTRACT

Dopamine D2 receptors (D2Rs) play crucial roles in regulating diverse physiological functions of the central nervous system and peripheral organs. D2Rs are also expressed in mammary glands. However, which cell types express D2Rs and whether they are involved in milk production remains unclear. The present findings revealed that D2Rs are expressed in the apical regions of the lateral membranes of mammary epithelial cells (MECs) in lactating mice. We also investigated the effects of the D2R agonist bromocriptine and/or antagonist domperidone on intracellular cAMP levels, milk protein production, and apoptosis in a lactation culture model of MECs that produce major milk components like lactating MECs in vivo. We found that bromocriptine decreased intracellular cAMP levels, whereas domperidone dose-dependently neutralized this effect. Bromocriptine also inhibited casein and lactoferrin production and suppressed activities of STAT5 and glucocorticoid receptors (GRs). Domperidone neutralized the inhibition of casein production as well as STAT5 and GR inactivation induced by bromocriptine. Furthermore, D2R activation by bromocriptine induced apoptosis and inactivated ERK, a signaling molecule responsible for promoting cell proliferation and survival. Domperidone attenuated ERK inactivation and apoptosis induced by bromocriptine. These findings suggest that D2Rs play regulatory roles in milk protein production and apoptosis in MECs.


Subject(s)
Apoptosis , Bromocriptine , Domperidone , Epithelial Cells , Lactation , Mammary Glands, Animal , Milk Proteins , Receptors, Dopamine D2 , Animals , Female , Mice , Apoptosis/drug effects , Bromocriptine/pharmacology , Cells, Cultured , Cyclic AMP/metabolism , Domperidone/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Lactation/metabolism , Mammary Glands, Animal/cytology , Mammary Glands, Animal/metabolism , Milk Proteins/metabolism , Milk Proteins/genetics , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D2/genetics , STAT5 Transcription Factor/metabolism
11.
Int Immunopharmacol ; 136: 112296, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38810310

ABSTRACT

Acetaminophen (APAP) is a widely used antipyretic and analgesic medication, but its overdose can induce acute liver failure with lack of effective therapies. Icariin is a bioactive compound derived from the herb Epimedium that displays hepatoprotective activities. Here, we explored the protective effects and mechanism of icariin on APAP-induced hepatotoxicity. Icariin (25/50 mg/kg) or N-Acetylcysteine (NAC, 300 mg/kg) were orally administered in wild-type C57BL/6 mice for 7 consecutive days before the APAP administration. Icariin attenuated APAP-induced acute liver injury in mice, as measured by alleviated serum enzymes activities and hepatic apoptosis. In vitro, icariin pretreatment significantly inhibited hepatocellular damage and apoptosis by reducing the BAX/Bcl-2 ratio as well as the expression of cleaved-caspase 3 and cleaved-PARP depended on the p53 pathway. Moreover, icariin attenuated APAP-mediated inflammatory response and oxidative stress via the Nrf2 and NF-κB pathways. Importantly, icariin reduced the expression of S100A9, icariin interacts with S100A9 as a direct cellular target, which was supported by molecular dynamics simulation and surface plasmon resonance assay (equilibrium dissociation constant, KD = 1.14 µM). In addition, the genetic deletion and inhibition of S100A9 not only alleviated APAP-induced injury but also reduced the icariin's protective activity in APAP-mediated liver injury. These data indicated that icariin targeted S100A9 to alleviate APAP-induced liver damage via the following signaling pathways NF-κB, p53, and Nrf2.


Subject(s)
Acetaminophen , Calgranulin B , Chemical and Drug Induced Liver Injury , Flavonoids , Mice, Inbred C57BL , Animals , Flavonoids/pharmacology , Flavonoids/therapeutic use , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Male , Mice , Calgranulin B/metabolism , Calgranulin B/genetics , Apoptosis/drug effects , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Liver/drug effects , Liver/pathology , Liver/metabolism , Humans , Signal Transduction/drug effects , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics
13.
Cancer Med ; 13(9): e7229, 2024 May.
Article in English | MEDLINE | ID: mdl-38698688

ABSTRACT

AIM: To investigate the relationship between chemoresistance in pancreatic cancer patients receiving postoperative gemcitabine adjuvant therapy and specific clinical/pathological characteristics, as well as its impact on patient prognosis. METHODS: From June 2018 to June 2021, clinical and pathological data of 148 pancreatic cancer patients were collected, and 101 patients were followed up for tumor recurrence/metastasis and survival status. The correlation between chemoresistance and specific clinical/pathological characteristics or patient prognosis was retrospectively analyzed. RESULTS: Of the 148 patients, 78 were in the chemoresistance group and 70 in the non-chemoresistance group. Univariate analysis showed that the development of chemoresistance may be related to patient age, combined diabetes, preoperative CA19-9 level, tumor size, AJCC stage, vascular invasion, and positive lymph node ratio. Furthermore, subsequent multivariate analysis incorporating these variables indicated that tumor size may be a key factor influencing chemoresistance (p < 0.001, OR = 1.584). Log-rank test showed patients in the chemoresistance group had worse overall survival (OS) (HR = 2.102, p = 0.018) and progression free survival (PFS) (HR = 3.208, p = 0.002) than patients in the non-chemoresistance group; and patients with smaller size tumors (diameter ≤3 cm) had significantly better OS (HR = 2.923, p < 0.001) and PFS (HR = 2.930, p = 0.003) than those with larger size tumors (diameter >3 cm). CONCLUSIONS: Patients with pancreatic cancer receiving postoperative gemcitabine adjuvant therapy are more likely to develop chemoresistance when their tumor sizes are larger (diameter >3 cm). Development of chemoresistance exacerbates the prognosis of patients with pancreatic cancer, and larger tumor size is also a risk factor for poor prognosis in these patients.


Subject(s)
Antimetabolites, Antineoplastic , Deoxycytidine , Drug Resistance, Neoplasm , Gemcitabine , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/surgery , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Male , Female , Chemotherapy, Adjuvant/methods , Middle Aged , Prognosis , Retrospective Studies , Aged , Antimetabolites, Antineoplastic/therapeutic use , Adult , Neoplasm Recurrence, Local
14.
Medicine (Baltimore) ; 103(16): e37869, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640264

ABSTRACT

RATIONALE: Eosinophilic angiocentric fibrosis (EAF) is considered to be a kind of benign IgG4-related disease, and it is more often found in the nasal cavity. We present a pretty rare case of orbital EAF that is unlike any other reported case for this case is an IgG4 negative orbital EAF and successfully treated by the fronto orbitozygomatic approach surgery. PATIENT CONCERNS: This is a 68-year-old man from a rural area of Inner Mongolia Autonomous Region, went to our hospital for a 2-month history of vision loss with a local hospital orbital computer tomography which showed that there was a lesion in his left orbit. The inspection of the patient revealed that the patient left eye was protruding outward and the left eyelid unable to complete open or close. And his left eyeball movement had difficulty in all directions. Postoperative pathology diagnosed that this was a case of IgG4-negative EAF case. DIAGNOSES: Orbital EAF. INTERVENTIONS: Surgical radical resection and postoperative glucocorticoid therapy. OUTCOMES: After surgery, the left eye vision of this patient increased to 0.6 tested in the standard logarithmic visual acuity chart. And his left eyeball movement dysfunction and eyeball outward protruding get a partially relief. LESSONS: EAF occurring in the orbit is a very rare disease and immunohistochemical results of EAF can be IgG4 negative.


Subject(s)
Orbit , Tomography, X-Ray Computed , Male , Humans , Aged , Fibrosis , Orbit/diagnostic imaging , Orbit/surgery , Orbit/pathology , Tomography, X-Ray Computed/adverse effects , Vision Disorders/etiology , Immunoglobulin G
15.
Nanoscale ; 16(16): 7884-7891, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38567420

ABSTRACT

Carbon nanotubes (CNTs) have excellent mechanical and electrical properties; however, they suffer from dispersion problems in various applications. Traditional dispersing strategies of CNTs mostly use oxidation with strong acids or mechanical milling with high energy, which causes serious damage to the intrinsic structures and properties of CNTs. Therefore, it is important to develop new methods for dispersing CNTs without destroying their structures. This paper proposes to disperse CNTs in low-temperature molten salts composed of KNO3-NaNO3-NaNO2-LiNO3-LiOH. By adjusting the composition ratio of molten salts and alkaline, the interaction between charged ions and CNT electrons in the molten salt is studied. The alkaline molten salts can stably disperse CNTs and do not destroy their lengths, thereby offering better electric conductivity. This work will provide a new yet effective method for dispersing CNTs with high aspect ratios, which are important for the application of CNTs and other nanocarbons.

16.
J Control Release ; 369: 458-474, 2024 May.
Article in English | MEDLINE | ID: mdl-38575077

ABSTRACT

The blood-brain barrier (BBB)/blood-tumor barrier (BTB) impedes brain entry of most brain-targeted drugs, whether they are water-soluble or hydrophobic. Endothelial WNT signaling and neoplastic pericytes maintain BTB low permeability by regulating tight junctions. Here, we proposed nitazoxanide (NTZ) and ibrutinib (IBR) co-loaded ICAM-1-targeting nanoparticles (NI@I-NPs) to disrupt the BTB in a time-dependent, reversible, and size-selective manner by targeting specific ICAM-1, inactivating WNT signaling and depleting pericytes in tumor-associated blood vessels in breast cancer brain metastases. At the optimal NTZ/IBR mass ratio (1:2), BTB opening reached the optimum effect at 48-72 h without any sign of intracranial edema and cognitive impairment. The combination of NI@I-NPs and chemotherapeutic drugs (doxorubicin and etoposide) extended the median survival of mice with breast cancer brain metastases. Targeting BTB endothelial WNT signaling and tumor pericytes via NI@I-NPs could open the BTB to improve chemotherapeutic efficiency against brain metastases.


Subject(s)
Blood-Brain Barrier , Brain Neoplasms , Nanoparticles , Pericytes , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/secondary , Brain Neoplasms/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Pericytes/metabolism , Pericytes/drug effects , Female , Humans , Nanoparticles/administration & dosage , Piperidines/administration & dosage , Piperidines/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Thiazoles/administration & dosage , Thiazoles/pharmacology , Cell Line, Tumor , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Pyrazoles/administration & dosage , Pyrazoles/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Doxorubicin/administration & dosage , Doxorubicin/therapeutic use , Mice, Inbred BALB C , Wnt Signaling Pathway/drug effects , Mice , Drug Delivery Systems , Adenine/analogs & derivatives
17.
J Ethnopharmacol ; 330: 118232, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38670407

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Arbutin is a naturally occurring glucoside extracted from plants, known for its antioxidant and tyrosinase inhibiting properties. It is widely used in cosmetic and pharmaceutical industries. With in-depth study of arbutin, its application in disease treatment is expanding, presenting promising development prospects. However, reports on the metabolic stability, plasma protein binding rate, and pharmacokinetic properties of arbutin are scarce. AIM OF THE STUDY: The aim of this study is to enrich the data of metabolic stability and pharmacokinetics of arbutin through the early pre-clinical evaluation, thereby providing some experimental basis for advancing arbutin into clinical research. MATERIALS AND METHODS: We developed an efficient and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for determining arbutin in plasma. We investigated the metabolic and pharmacokinetic properties of arbutin through in vitro metabolism assay, cytochrome enzymes P450 (CYP450) inhibition studies, plasma protein binding rate analysis, Caco-2 cell permeability tests, and rat pharmacokinetics to understand its in vivo performance. RESULTS: In vitro studies show that arbutin is stable, albeit with some species differences. It exhibits low plasma protein binding (35.35 ± 11.03% âˆ¼ 40.25 ± 2.47%), low lipophilicity, low permeability, short half-life (0.42 ± 0.30 h) and high oral bioavailability (65 ± 11.6%). Arbutin is primarily found in the liver and kidneys and is eliminated in the urine. It does not significantly inhibit CYP450 up to 10 µM, suggesting a low potential for drug interactions. Futhermore, preliminary toxicological experiments indicate arbutin's safety, supporting its potential as a therapeutic agent. CONCLUSION: This study provides a comprehensive analysis the drug metabolism and pharmacokinetics (DMPK) of arbutin, enriching our understanding of its metabolism stability and pharmacokinetics properties, It establishes a foundation for further structural optimization, pharmacological studies, and the clinical development of arbutin.


Subject(s)
Arbutin , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Arbutin/pharmacokinetics , Arbutin/pharmacology , Tandem Mass Spectrometry/methods , Animals , Humans , Caco-2 Cells , Male , Chromatography, Liquid/methods , Rats , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Protein Binding , Cytochrome P-450 Enzyme System/metabolism , Biological Products/pharmacokinetics , Biological Products/pharmacology , Biological Products/chemistry , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme Inhibitors/pharmacokinetics , Liquid Chromatography-Mass Spectrometry
18.
Nurs Open ; 11(4): e2144, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38618718

ABSTRACT

AIM: To investigate the relationship among emotional intelligence (EI), resilience and academic procrastination (AP), and provide suggestions for the development of targeted intervention strategies and lowering of AP level of nursing undergraduates. DESIGN: A cross-sectional study. METHODS: Three provincial universities offering nursing courses in China were investigated in this study. A convenience sample of 256 nursing undergraduates from May 2021 to September 2021 were recruited, with a response rate of 91.4%. Data were collected using face-to-face interviews. The survey tools included the General Information Questionnaire, Academic Procrastination Scale, Emotional Intelligence Scale and Resilience Scale. IBM SPSS v19.0 and Amos 22.0 were used for data analysis. RESULTS: The AP of sampled nursing undergraduates was at the middle level (54.4 ± 21.5). The AP of nursing undergraduates was negatively correlated with EI and resilience. Moreover, the analysis on the mediating role of resilience via structural equation model showed a good fit, with χ2/df = 2.34, RMSEA = 0.07, CFI = 0.99, GFI = 0.95, TLI = 0.98. PATIENT OR PUBLIC CONTRIBUTION: No patient or public contribution.


Subject(s)
Procrastination , Resilience, Psychological , Humans , Cross-Sectional Studies , Research Design , Emotional Intelligence
19.
Cancer Med ; 13(7): e7175, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38597130

ABSTRACT

BACKGROUND: Combination of chidamide and anti-PD-L1 inhibitor produce synergistic anti-tumor effect in advanced NSCLC patients resistant to anti-PD-1 treatment. However, the effect of chidamide plus envafolimab has not been reported. AIMS: This study aimed to evaluate the efficacy of chidamide plus envafolimab in advanced NSCLC patients resistant toanti-PD-1 treatment. MATERIALS AND METHODS: Eligible advanced NSCLC patients after resistant to anti-PD-1 therapy received chidamide and envafolimab. The primary endpoint was objective response rate (ORR). The secondary end points included disease control rate (DCR), progression-free survival (PFS), and safety. The expression of histone deacetylase 2 (HDAC2), PD-L1, and blood TMB (bTMB) was also analyzed. RESULTS: After a median follow-up of 8.1 (range: 7.6-9.2) months, only two patients achieved partial response. The ORR was 6.7% (2/30), DCR was 50% (15/30), and median PFS (mPFS) was 3.5 (95% confidence interval: 1.9-5.5) months. Biomarker analysis revealed that patients with high-level HDAC2 expression had numerically superior ORR (4.3% vs. 0), DCR (52.2% vs. 0) and mPFS (3.7 vs. 1.4m). Patients with negative PD-L1 had numerically superior DCR (52.2% vs. 33.3%) and mPFS (3.7m vs. 1.8m), so were those with low-level bTMB (DCR: 59.1% vs. 16.7%, mPFS: 3.8 vs.1.9m). Overall safety was controllable. DISCUSSION: High HDAC2patients showed better ORR, DCR, and PFS. In addition, patient with negative PD-L1 and low-level bTMB had better DCR and PFS. This may be related to the epigenetic function of chidamide. However, the sample size was not big enough, so it is necessary to increase sample size to confirm the conclusion. CONCLUSION: Combination of chidamide and envafolimab showed efficacy signals in certain NSCLC patients. But further identification of beneficial population is necessary for precision treatment.


Subject(s)
Aminopyridines , Antibodies, Monoclonal, Humanized , Antineoplastic Agents, Immunological , Benzamides , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , B7-H1 Antigen/metabolism , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers
20.
Nutr Res ; 124: 85-93, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428291

ABSTRACT

The Comprehensive Dietary Antioxidant Index (CDAI) plays a crucial role as an indicator of diets rich in antioxidants. Despite its importance, the clinical significance of CDAI concerning olfactory dysfunction (OD) remains unknown. Our study aims to investigate whether there is an association between CDAI and OD within the general adult population aged 20 years and older. We hypothesized a negative correlation between CDAI and OD in the general adult population. A cross-sectional study used data from the National Health and Nutrition Examination Survey (n = 1624; >20 y of age). A multivariate logistic regression model examined the connection between CDAI and OD. Smooth-fitted curves were used to investigate the nonlinear relationship between CDAI and OD. A threshold effect analysis was then used to pinpoint the inflection point. Subgroup analyses were conducted based on gender and age. Multivariate regression analysis revealed a negative correlation between CDAI and OD. After controlling for variables, the risk of OD in the highest quartile of CDAI was significantly lower than in the lowest quartile (Q1) (odds ratio = 0.64; 95% confidence interval, 0.44-0.92; P = .0148). Stratified analysis indicated a significant association between CDAI and OD in individuals younger than age 60 years and male. This research suggests that increasing the co-ingestion of antioxidants within a moderate range can reduce the incidence of OD.


Subject(s)
Antioxidants , Diet , Nutrition Surveys , Olfaction Disorders , Humans , Cross-Sectional Studies , Male , Antioxidants/analysis , Female , Adult , Middle Aged , Olfaction Disorders/epidemiology , United States/epidemiology , Aged , Young Adult , Logistic Models
SELECTION OF CITATIONS
SEARCH DETAIL